No Arabic abstract
HEPCloud is rapidly becoming the primary system for provisioning compute resources for all Fermilab-affiliated experiments. In order to reliably meet the peak demands of the next generation of High Energy Physics experiments, Fermilab must plan to elastically expand its computational capabilities to cover the forecasted need. Commercial cloud and allocation-based High Performance Computing (HPC) resources both have explicit and implicit costs that must be considered when deciding when to provision these resources, and at which scale. In order to support such provisioning in a manner consistent with organizational business rules and budget constraints, we have developed a modular intelligent decision support system (IDSS) to aid in the automatic provisioning of resources spanning multiple cloud providers, multiple HPC centers, and grid computing federations. In this paper, we discuss the goals and architecture of the HEPCloud Facility, the architecture of the IDSS, and our early experience in using the IDSS for automated facility expansion both at Fermi and Brookhaven National Laboratory.
The next generation of High Energy Physics experiments are expected to generate exabytes of data---two orders of magnitude greater than the current generation. In order to reliably meet peak demands, facilities must either plan to provision enough resources to cover the forecasted need, or find ways to elastically expand their computational capabilities. Commercial cloud and allocation-based High Performance Computing (HPC) resources both have explicit and implicit costs that must be considered when deciding when to provision these resources, and to choose an appropriate scale. In order to support such provisioning in a manner consistent with organizational business rules and budget constraints, we have developed a modular intelligent decision support system (IDSS) to aid in the automatic provisioning of resources---spanning multiple cloud providers, multiple HPC centers, and grid computing federations.
Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing nterest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized both local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. In addition, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.
Data analysis in HEP has often relied on batch systems and event loops; users are given a non-interactive interface to computing resources and consider data event-by-event. The Coffea-casa prototype analysis facility is an effort to provide users with alternate mechanisms to access computing resources and enable new programming paradigms. Instead of the command-line interface and asynchronous batch access, a notebook-based web interface and interactive computing is provided. Instead of writing event loops, the column-based Coffea library is used. In this paper, we describe the architectural components of the facility, the services offered to end-users, and how it integrates into a larger ecosystem for data access and authentication.
This document outlines the approach to supporting cross-node transactions over a Redis cluster.
Clinical decision support tools (DST) promise improved healthcare outcomes by offering data-driven insights. While effective in lab settings, almost all DSTs have failed in practice. Empirical research diagnosed poor contextual fit as the cause. This paper describes the design and field evaluation of a radically new form of DST. It automatically generates slides for clinicians decision meetings with subtly embedded machine prognostics. This design took inspiration from the notion of Unremarkable Computing, that by augmenting the users routines technology/AI can have significant importance for the users yet remain unobtrusive. Our field evaluation suggests clinicians are more likely to encounter and embrace such a DST. Drawing on their responses, we discuss the importance and intricacies of finding the right level of unremarkableness in DST design, and share lessons learned in prototyping critical AI systems as a situated experience.