We construct examples of fibered three-manifolds with first Betti number at least 2 and with fibered faces all of whose monodromies extend to a handlebody.
We study geometric properties of stabilisers in the handlebody group. We find that stabilisers of meridians are undistorted, while stabilisers of primitive curves or annuli are exponentially distorted for large enough genus.
We develop a coarse notion of bundle and use it to understand the coarse geometry of group extensions and, more generally, groups acting on proper metric spaces. The results are particularly sharp for groups acting on (locally finite) trees with Abelian stabilizers, which we are able to classify completely.
We determine which three-manifolds are dominated by products. The result is that a closed, oriented, connected three-manifold is dominated by a product if and only if it is finitely covered either by a product or by a connected sum of copies of the product of the two-sphere and the circle. This characterization can also be formulated in terms of Thurston geometries, or in terms of purely algebraic properties of the fundamental group. We also determine which three-manifolds are dominated by non-trivial circle bundles, and which three-manifold groups are presentable by products.
A handlebody-link is a disjoint union of embeddings of handlebodies in $S^3$ and an HL-homotopy is an equivalence relation on handlebody-links generated by self-crossing changes. The second author and Ryo Nikkuni classified the set of HL-homotopy classes of 2-component handlebody-links completely using the linking numbers for handlebody-links. In this paper, we construct a family of invariants for HL-homotopy classes of general handlebody-links, by using Milnors link-homotopy invariants. Moreover, we give a bijection between the set of HL-homotopy classes of almost trivial handlebody-links and tensor product space modulo some general linear actions, especially for 3- or more component handlebody-links. Through this bijection we construct comparable invariants of HL-homotopy classes.
We generalize unoriented handlebody-links to the twisted virtual case, obtaining Reidemeister moves for handlebody-links in ambient spaces of the form $Sigmatimes [0,1]$ for $Sigma$ a compact closed 2-manifold up to stable equivalence. We introduce a related algebraic structure known as twisted virtual bikeigebras whose axioms are motivated by the twisted virtual handlebody-link Reidemeister moves. We use twisted virtual bikeigebras to define $X$-colorability for twisted virtual handlebody-links and define an integer-valued invariant $Phi_{X}^{mathbb{Z}}$ of twisted virtual handlebody-links. We provide example computations of the new invariants and use them to distinguish some twisted virtual handlebody-links.