Do you want to publish a course? Click here

Controlling Dipolar Exchange Interactions in a Dense 3D Array of Large Spin Fermions

89   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dipolar interactions are ubiquitous in nature and rule the behavior of a broad range of systems spanning from energy transfer in biological systems to quantum magnetism. Here, we study magnetization-conserving dipolar induced spin-exchange dynamics in dense arrays of fermionic erbium atoms confined in a deep three-dimensional lattice. Harnessing the special atomic properties of erbium, we demonstrate control over the spin dynamics by tuning the dipole orientation and changing the initial spin state within the large 20 spin hyperfine manifold. Furthermore, we demonstrate the capability to quickly turn on and off the dipolar exchange dynamics via optical control. The experimental observations are in excellent quantitative agreement with numerical calculations based on discrete phase-space methods, which capture entanglement and beyond-mean field effects. Our experiment sets the stage for future explorations of rich magnetic behaviors in long-range interacting dipoles, including exotic phases of matter and applications for quantum information processing.



rate research

Read More

We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dipole, changing the density profile and generating an effective dipolar potential centred at the vortex core whose most slowly decaying terms go as $1/rho^2$ and $ln(rho)/rho^3$. These effects modify the vortex-vortex interaction which, in particular, becomes anisotropic for dipoles polarized in the plane. Striking modifications to vortex-vortex dynamics are demonstrated, i.e. anisotropic co-rotation dynamics and the suppression of vortex annihilation.
Ring exchange is an elementary interaction for modeling unconventional topological matters which hold promise for efficient quantum information processing. We report the observation of four-body ring-exchange interactions and the topological properties of anyonic excitations within an ultracold atom system. A minimum toric code Hamiltonian in which the ring exchange is the dominant term, was implemented by engineering a Hubbard Hamiltonian that describes atomic spins in disconnected plaquette arrays formed by two orthogonal superlattices. The ring-exchange interactions were resolved from the dynamical evolutions in the spin orders, matching well with the predicted energy gaps between two anyonic excitations of the spin system. A braiding operation was applied to the spins in the plaquettes and an induced phase $1.00(3)pi$ in the four-spin state was observed, confirming $frac{1}{2}$-anynoic statistics. This work represents an essential step towards studying topological matters with many-body systems and the applications in quantum computation and simulation.
Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, which limits the observation of many-body effects, motivating research into potential alternatives. Here we demonstrate that SOC can be engineered to occur naturally in a one-dimensional fermionic 87Sr optical lattice clock (OLC). In contrast to previous SOC experiments, in this work the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states. We use clock spectroscopy to prepare lattice band populations, internal electronic states, and quasimomenta, as well as to produce SOC dynamics. The exceptionally long lifetime of the excited clock state (160 s) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We utilize these capabilities to study Bloch oscillations, spin-momentum locking, and Van Hove singularities in the transition density of states. Our results lay the groundwork for the use of OLCs to probe novel SOC phases of matter.
126 - Ahmet Keles , Erhai Zhao 2018
Antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that next nearest neighbor interaction $J_2$ enhances the frustration and leads to a spin liquid for $J_2/J_1in (0.08,0.15)$. In addition, DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at small dipole titling angle $thetain[0,10^circ)$. In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, $thetain [0,54^circ)$, for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG) which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.
Quantum fluctuations are the origin of genuine quantum many-body effects, and can be neglected in classical mean-field phenomena. Here we report on the observation of stable quantum droplets containing $sim$ 800 atoms which are expected to collapse at the mean-field level due to the essentially attractive interaction. By systematic measurements on individual droplets we demonstrate quantitatively that quantum fluctuations stabilize them against the mean-field collapse. We observe in addition interference of several droplets indicating that this stable many-body state is phase coherent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا