Do you want to publish a course? Click here

Absence of long-range order in a triangular spin system with dipolar interactions

127   0   0.0 ( 0 )
 Added by Ahmet Keles
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that next nearest neighbor interaction $J_2$ enhances the frustration and leads to a spin liquid for $J_2/J_1in (0.08,0.15)$. In addition, DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at small dipole titling angle $thetain[0,10^circ)$. In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, $thetain [0,54^circ)$, for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG) which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.



rate research

Read More

We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dipole, changing the density profile and generating an effective dipolar potential centred at the vortex core whose most slowly decaying terms go as $1/rho^2$ and $ln(rho)/rho^3$. These effects modify the vortex-vortex interaction which, in particular, becomes anisotropic for dipoles polarized in the plane. Striking modifications to vortex-vortex dynamics are demonstrated, i.e. anisotropic co-rotation dynamics and the suppression of vortex annihilation.
We study the quasiparticle excitation and quench dynamics of the one-dimensional transverse-field Ising model with power-law ($1/r^{alpha}$) interactions. We find that long-range interactions give rise to a confining potential, which couples pairs of domain walls (kinks) into bound quasiparticles, analogous to mesonic bound states in high-energy physics. We show that these quasiparticles have signatures in the dynamics of order parameters following a global quench and the Fourier spectrum of these order parameters can be expolited as a direct probe of the masses of the confined quasiparticles. We introduce a two-kink model to qualitatively explain the phenomenon of long-range-interaction induced confinement, and to quantitatively predict the masses of the bound quasiparticles. Furthermore, we illustrate that these quasiparticle states can lead to slow thermalization of one-point observables for certain initial states. Our work is readily applicable to current trapped-ion experiments.
We numerically study the dynamics after a parameter quench in the one-dimensional transverse-field Ising model with long-range interactions ($propto 1/r^alpha$ with distance $r$), for finite chains and also directly in the thermodynamic limit. In nonequilibrium, i.e., before the system settles into a thermal state, we find a long-lived regime that is characterized by a prethermal value of the magnetization, which in general differs from its thermal value. We find that the ferromagnetic phase is stabilized dynamically: as a function of the quench parameter, the prethermal magnetization shows a transition between a symmetry-broken and a symmetric phase, even for those values of $alpha$ for which no finite-temperature transition occurs in equilibrium. The dynamical critical point is shifted with respect to the equilibrium one, and the shift is found to depend on $alpha$ as well as on the quench parameters.
The existence or absence of non-analytic cusps in the Loschmidt-echo return rate is traditionally employed to distinguish between a regular dynamical phase (regular cusps) and a trivial phase (no cusps) in quantum spin chains after a global quench. However, numerical evidence in a recent study [J. C. Halimeh and V. Zauner-Stauber, arXiv:1610.02019] suggests that instead of the trivial phase a distinct anomalous dynamical phase characterized by a novel type of non-analytic cusps occurs in the one-dimensional transverse-field Ising model when interactions are sufficiently long-range. Using an analytic semiclassical approach and exact diagonalization, we show that this anomalous phase also arises in the fully-connected case of infinite-range interactions, and we discuss its defining signature. Our results show that the transition from the regular to the anomalous dynamical phase coincides with Z2-symmetry breaking in the infinite-time limit, thereby showing a connection between two different concepts of dynamical criticality. Our work further expands the dynamical phase diagram of long-range interacting quantum spin chains, and can be tested experimentally in ion-trap setups and ultracold atoms in optical cavities, where interactions are inherently long-range.
We study two dimensional stripe forming systems with competing repulsive interactions decaying as $r^{-alpha}$. We derive an effective Hamiltonian with a short range part and a generalized dipolar interaction which depends on the exponent $alpha$. An approximate map of this model to a known XY model with dipolar interactions allows us to conclude that, for $alpha <2$ long range orientational order of stripes can exist in two dimensions, and establish the universality class of the models. When $alpha geq 2$ no long-range order is possible, but a phase transition in the KT universality class is still present. These two different critical scenarios should be observed in experimentally relevant two dimensional systems like electronic liquids ($alpha=1$) and dipolar magnetic films ($alpha=3$). Results from Langevin simulations of Coulomb and dipolar systems give support to the theoretical results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا