We present thermodynamic and neutron scattering measurements on the quantum spin ice candidate Nd$_2$Zr$_2$O$_7$. The parameterization of the anisotropic exchange Hamiltonian is refined based on high-energy-resolution inelastic neutron scattering data together with thermodynamic data using linear spin wave theory and numerical linked cluster expansion. Magnetic phase diagrams are calculated using classical Monte Carlo simulations with fields along mbox{[100]}, mbox{[110]} and mbox{[111]} crystallographic directions which agree qualitatively with the experiment. Large hysteresis and irreversibility for mbox{[111]} is reproduced and the microscopic mechanism is revealed by mean field calculations to be the existence of metastable states and domain inversion. Our results shed light on the explanations of the recently observed dynamical kagome ice in Nd$_2$Zr$_2$O$_7$ in mbox{[111]} fields.
We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an all in - all out antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above $T_{rm N} approx 300$ mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near $T_{rm N}$ do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the all in - all out order superimposed on a Coulomb phase.
We present a muon spin relaxation study on the Ising pyrochlore Nd$_2$Zr$_2$O$_7$ which develops an all-in-all-out magnetic order below 0.4~K. At 20~mK far below the ordering transition temperature, the zero-field muon spin relaxation spectra show no static features and can be well described by a dynamical Gaussian-broadened Gaussian Kubo-Toyabe function indicating strong fluctuations of the ordered state. The spectra of the paramagnetic state (below 4.2~K) reveal anomalously slow paramagnetic spin dynamics and show only small difference with the spectra of the ordered state. We find that the fluctuation rate decreases with decreasing temperature and becomes nearly temperature independent below the transition temperature indicating persistent slow spin dynamics in the ground state. The field distribution width shows a small but sudden increase at the transition temperature and then becomes almost constant. The spectra in applied longitudinal fields are well fitted by the conventional dynamical Gaussian Kubo-Toyabe function, which further supports the dynamical nature of the ground state. The fluctuation rate shows a peak as a function of external field which is associated with a field-induced spin-flip transition. The strong dynamics in the ordered state are attributed to the transverse coupling of the Ising spins introduced by the multipole interactions.
By combining neutron scattering and magnetization measurements down to 80 mK, we determine the $(H,T)$ phase diagram of the Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnet compounds. In those samples, Zr is partially substituted by Ti, hence tuning the exchange parameters and testing the robustness of the various phases. In all samples, the ground state remains all in / all out, while the field induces phase transitions towards new states characterized by 2 in - 2 out or 1 out - 3 in / 1 in - 3 out configurations. These transitions manifest as metamagnetic singularities in the magnetization vs field measurements. Strikingly, it is found that moderate substitution reinforces the stability of the all in / all out phase: the Neel temperature, the metamagnetic fields along with the ordered magnetic moment are higher in substituted samples with $x <$ 10%.
In the metallic pyrochlore Nd$_2$Mo$_2$O$_7$, the conducting Molybdenum sublattice adopts canted, yet nearly collinear ferromagnetic order with nonzero scalar spin chirality. The chemical potential may be controlled by replacing Nd$^{3+}$ with Ca$^{2+}$, while introducing only minimal additional disorder to the conducting states. Here, we demonstrate the stability of the canted ferromagnetic state, including the tilting angle of Molybdenum spins, in (Nd$_{1-x}$Ca$_{x}$)$_2$Mo$_2$O$_7$ (NCMO) with $xle 0.15$ using magnetic susceptibility measurements. Mo-Mo and Mo-Nd magnetic couplings both change sign above $x=0.22$, where the canted ferromagnetic state gives way to a spin-glass metallic region. Contributions to the Curie-Weiss law from two magnetic sublattices are separated systematically.
In the quest to realize a quantum spin liquid (QSL), magnetic long-range order is hardly welcome. Yet it can offer deep insights into a complex world of strong correlations and fluctuations. Much hope was placed in the cubic pyrochlore Yb$_2$Ti$_2$O$_7$ as a putative U(1) QSL but a new class of ultra-pure single crystals make it abundantly clear the stoichiometric compound is a ferromagnet. Here we present a detailed experimental and theoretical study of the corresponding field-temperature phase diagram. We find it to be richly anisotropic with a critical endpoint for $vec{B},parallel,langle 100rangle$, while field parallel to $langle 110 rangle$ and $langle 111 rangle$ enhances the critical temperature by up to a factor of two and shifts the onset of the field-polarized state to finite fields. Landau theory shows that Yb$_2$Ti$_2$O$_7$ in some ways is remarkably similar to pure iron. However, it also pinpoints anomalies that cannot be accounted for at the classical mean-field level including a dramatic enhancement of $T_{mathrm{C}}$ and reentrant phase boundary by fields with a component transverse to the easy axes, as well as the anisotropy of the upper critical field in the quantum limit.
J. Xu
,Owen Benton
,V. K. Anand
.
(2019)
.
"Anisotropic exchange Hamiltonian, magnetic phase diagram and domain inversion of Nd$_2$Zr$_2$O$_7$"
.
Jianhui Xu
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا