Do you want to publish a course? Click here

Field-temperature phase diagram of the enigmatic Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnets

239   0   0.0 ( 0 )
 Added by Elsa Lhotel
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

By combining neutron scattering and magnetization measurements down to 80 mK, we determine the $(H,T)$ phase diagram of the Nd$_2$(Zr$_{1-x}$Ti$_x$)$_2$O$_7$ pyrochlore magnet compounds. In those samples, Zr is partially substituted by Ti, hence tuning the exchange parameters and testing the robustness of the various phases. In all samples, the ground state remains all in / all out, while the field induces phase transitions towards new states characterized by 2 in - 2 out or 1 out - 3 in / 1 in - 3 out configurations. These transitions manifest as metamagnetic singularities in the magnetization vs field measurements. Strikingly, it is found that moderate substitution reinforces the stability of the all in / all out phase: the Neel temperature, the metamagnetic fields along with the ordered magnetic moment are higher in substituted samples with $x <$ 10%.



rate research

Read More

We explore the field-temperature phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$, by means of magnetization and neutron diffraction experiments. Depending on the field strength and direction relative to the high symmetry cubic directions $[001], [1bar{1}0]$ and $[111]$, the refined field induced magnetic structures are derived from the zero field $psi_2$ and $psi_3$ states of the $Gamma_5$ irreducible representation which describes the ground state of XY pyrochlore antiferromagnets. At low field, domain selection effects are systematically at play. In addition, for $[001]$, a phase transition is reported towards a $psi_3$ structure at a characteristic field $H_c^{001}=$ 43 mT. For $[1bar{1}0]$ and $[111]$, the spins are continuously tilted by the field from the $psi_2$ state, and no phase transition is found while domain selection gives rise to sharp anomalies in the field dependence of the Bragg peaks intensity. For $[1bar{1}0]$, these results are confirmed by high resolution inelastic neutron scattering experiments, which in addition allow us to determine the field dependence of the spin gap. This study agrees qualitatively with the scenario proposed theoretically by Maryasin {it et al.} [Phys. Rev. B {bf 93}, 100406(R) (2016)], yet the strength of the field induced anisotropies is significantly different from theory.
206 - L. Yin , J. S. Xia , Y. Takano 2012
By means of ac magnetic-susceptibility measurements, we find evidence for a new magnetic phase of Tb$_2$Ti$_2$O$_7$ below about 140 mK in zero magnetic field. In magnetic fields parallel to [111], this phase---exhibiting frequency- and amplitude-dependent susceptibility and an extremely slow spin dynamics---extends to about 70 mT, at which it gives way to another phase. The field dependence of the susceptibility of this second phase, which extends to about 0.6 T, indicates the presence of a weak magnetization plateau below 50 mK, as has been predicted by a single-tetrahedron four-spin model, giving support to the underlying proposal that the disordered low-field ground state of Tb$_2$Ti$_2$O$_7$ is a quantum spin ice.
We investigate the temperature dependence of the spin dynamics in the pyrochlore magnet Nd$_2$Zr$_2$O$_7$ by neutron scattering experiments. At low temperature, this material undergoes a transition towards an all in - all out antiferromagnetic phase and the spin dynamics encompass a dispersion-less mode, characterized by a dynamical spin ice structure factor. Unexpectedly, this mode is found to survive above $T_{rm N} approx 300$ mK. Concomitantly, elastic correlations of the spin ice type develop. These are the signatures of a peculiar correlated paramagnetic phase which can be considered as a new example of Coulomb phase. Our observations near $T_{rm N}$ do not reproduce the signatures expected for a Higgs transition, but show reminiscent features of the all in - all out order superimposed on a Coulomb phase.
56 - Sheetal , C.S.Yadav 2020
Dy$_{2}$Zr$_{2}$O$_{7}$ a disordered pyrochlore system, exhibits the spin ice freezing under the application of magnetic field. Our studies suggest the stabilization of pyrochlore phase in Dy$_{2-x}$La$_{x}$Zr$_{2}$O$_{7}$ with the substitution of nonmagnetic La, along with the biphasic mixture for the intermediate compositions. We observed that the higher La compositions (1.5 $leq$ x $leq$ 1.9), show spin freezing (T $sim$ 17 K) similar to the field induced spin ice freezing for low La compositions (0 $leq$ x $leq$ 0.5), and the well known spin ice systems Dy$_{2}$Ti$_{2}$O$_{7}$ and Ho$_{2}$Ti$_{2}$O$_{7}$. The low temperature magnetic state for higher La compositions (1.5 $leq$ x $leq$ 1.9) culminates into spin glass state below 6 K. The Cole-Cole plot and Casimir-du Pr$acute{e}$ fit shows narrow distribution of spin relaxation time in these compounds.
The search for quantum spin liquids (QSL) -- topological magnets with fractionalized excitations -- has been a central theme in condensed matter and materials physics. While theories are no longer in short supply, tracking down materials has turned out to be remarkably tricky, in large part because of the difficulty to diagnose experimentally a state with only topological, rather than conventional, forms of order. Pyrochlore systems have proven particularly promising, hosting a classical Coulomb phase in the spin ices Dy/Ho$_2$Ti$_2$O$_7$, with subsequent proposals of candidate QSLs in other pyrochlores. Connecting experiment with detailed theory exhibiting a robust QSL has remained a central challenge. Here, focusing on the strongly spin-orbit coupled effective $S=1/2$ pyrochlore Ce$_2$Zr$_2$O$_7$, we analyse recent thermodynamic and neutron scattering experiments, to identify a microscopic effective Hamiltonian through a combination of finite temperature Lanczos, Monte Carlo and analytical spin dynamics calculations. Its parameter values suggest a previously unobserved exotic phase, a $pi$-flux U(1) QSL. Intriguingly, the octupolar nature of the moments makes them less prone to be affected by crystal imperfections or magnetic impurities, while also hiding some otherwise characteristic signatures from neutrons, making this QSL arguably more stable than its more conventional counterparts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا