Do you want to publish a course? Click here

Unsupervised acoustic unit discovery for speech synthesis using discrete latent-variable neural networks

99   0   0.0 ( 0 )
 Added by Herman Kamper
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

For our submission to the ZeroSpeech 2019 challenge, we apply discrete latent-variable neural networks to unlabelled speech and use the discovered units for speech synthesis. Unsupervised discrete subword modelling could be useful for studies of phonetic category learning in infants or in low-resource speech technology requiring symbolic input. We use an autoencoder (AE) architecture with intermediate discretisation. We decouple acoustic unit discovery from speaker modelling by conditioning the AEs decoder on the training speaker identity. At test time, unit discovery is performed on speech from an unseen speaker, followed by unit decoding conditioned on a known target speaker to obtain reconstructed filterbanks. This output is fed to a neural vocoder to synthesise speech in the target speakers voice. For discretisation, categorical variational autoencoders (CatVAEs), vector-quantised VAEs (VQ-VAEs) and straight-through estimation are compared at different compression levels on two languages. Our final model uses convolutional encoding, VQ-VAE discretisation, deconvolutional decoding and an FFTNet vocoder. We show that decoupled speaker conditioning intrinsically improves discrete acoustic representations, yielding competitive synthesis quality compared to the challenge baseline.



rate research

Read More

This work presents a broad study on the adaptation of neural network acoustic models by means of learning hidden unit contributions (LHUC) -- a method that linearly re-combines hidden units in a speaker- or environment-dependent manner using small amounts of unsupervised adaptation data. We also extend LHUC to a speaker adaptive training (SAT) framework that leads to a more adaptable DNN acoustic model, working both in a speaker-dependent and a speaker-independent manner, without the requirements to maintain auxiliary speaker-dependent feature extractors or to introduce significant speaker-dependent changes to the DNN structure. Through a series of experiments on four different speech recognition benchmarks (TED talks, Switchboard, AMI meetings, and Aurora4) comprising 270 test speakers, we show that LHUC in both its test-only and SAT variants results in consistent word error rate reductions ranging from 5% to 23% relative depending on the task and the degree of mismatch between training and test data. In addition, we have investigated the effect of the amount of adaptation data per speaker, the quality of unsupervised adaptation targets, the complementarity to other adaptation techniques, one-shot adaptation, and an extension to adapting DNNs trained in a sequence discriminative manner.
Although there are more than 6,500 languages in the world, the pronunciations of many phonemes sound similar across the languages. When people learn a foreign language, their pronunciation often reflects their native languages characteristics. This motivates us to investigate how the speech synthesis network learns the pronunciation from datasets from different languages. In this study, we are interested in analyzing and taking advantage of multilingual speech synthesis network. First, we train the speech synthesis network bilingually in English and Korean and analyze how the network learns the relations of phoneme pronunciation between the languages. Our experimental result shows that the learned phoneme embedding vectors are located closer if their pronunciations are similar across the languages. Consequently, the trained networks can synthesize the English speakers Korean speech and vice versa. Using this result, we propose a training framework to utilize information from a different language. To be specific, we pre-train a speech synthesis network using datasets from both high-resource language and low-resource language, then we fine-tune the network using the low-resource language dataset. Finally, we conducted more simulations on 10 different languages to show it is generally extendable to other languages.
In this work, we propose global style tokens (GSTs), a bank of embeddings that are jointly trained within Tacotron, a state-of-the-art end-to-end speech synthesis system. The embeddings are trained with no explicit labels, yet learn to model a large range of acoustic expressiveness. GSTs lead to a rich set of significant results. The soft interpretable labels they generate can be used to control synthesis in novel ways, such as varying speed and speaking style - independently of the text content. They can also be used for style transfer, replicating the speaking style of a single audio clip across an entire long-form text corpus. When trained on noisy, unlabeled found data, GSTs learn to factorize noise and speaker identity, providing a path towards highly scalable but robust speech synthesis.
This paper presents a deep Gaussian process (DGP) model with a recurrent architecture for speech sequence modeling. DGP is a Bayesian deep model that can be trained effectively with the consideration of model complexity and is a kernel regression model that can have high expressibility. In the previous studies, it was shown that the DGP-based speech synthesis outperformed neural network-based one, in which both models used a feed-forward architecture. To improve the naturalness of synthetic speech, in this paper, we show that DGP can be applied to utterance-level modeling using recurrent architecture models. We adopt a simple recurrent unit (SRU) for the proposed model to achieve a recurrent architecture, in which we can execute fast speech parameter generation by using the high parallelization nature of SRU. The objective and subjective evaluation results show that the proposed SRU-DGP-based speech synthesis outperforms not only feed-forward DGP but also automatically tuned SRU- and long short-term memory (LSTM)-based neural networks.
In this work, we propose a hierarchical subspace model for acoustic unit discovery. In this approach, we frame the task as one of learning embeddings on a low-dimensional phonetic subspace, and simultaneously specify the subspace itself as an embedding on a hyper-subspace. We train the hyper-subspace on a set of transcribed languages and transfer it to the target language. In the target language, we infer both the language and unit embeddings in an unsupervised manner, and in so doing, we simultaneously learn a subspace of units specific to that language and the units that dwell on it. We conduct our experiments on TIMIT and two low-resource languages: Mboshi and Yoruba. Results show that our model outperforms major acoustic unit discovery techniques, both in terms of clustering quality and segmentation accuracy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا