No Arabic abstract
In this work, we propose minimal realizations for generating Dirac neutrino masses in the context of a right-handed abelian gauge extension of the Standard Model. Utilizing only $U(1)_R$ symmetry, we address and analyze the possibilities of Dirac neutrino mass generation via (a) textit{tree-level seesaw} and (b) textit{radiative correction at the one-loop level}. One of the presented radiative models implements the attractive textit{scotogenic} model that links neutrino mass with Dark Matter (DM), where the stability of the DM is guaranteed from a residual discrete symmetry emerging from $U(1)_R$. Since only the right-handed fermions carry non-zero charges under the $U(1)_R$, this framework leads to sizable and distinctive Left-Right asymmetry as well as Forward-Backward asymmetry discriminating from $U(1)_{B-L}$ models and can be tested at the colliders. We analyze the current experimental bounds and present the discovery reach limits for the new heavy gauge boson $Z^{prime}$ at the LHC and ILC. Furthermore, we also study the associated charged lepton flavor violating processes, dark matter phenomenology and cosmological constraints of these models.
We assess the sensitivity of the LHC, its high energy upgrade, and a prospective 100 TeV hadronic collider to the Dirac Yukawa coupling of the heavy neutrinos in left-right symmetric models (LRSMs). We focus specifically on the trilepton final state in regions of parameter space yielding prompt decays of the right-handed gauge bosons ($W_R$) and neutrinos ($N_R$). In the minimal LRSM, the Dirac Yukawa couplings are completely fixed in terms of the mass matrices for the heavy and light neutrinos. In this case, the trilepton signal provides a direct probe of the Dirac mass term for a fixed $W_R$ and $N_R$ mass. We find that while it is possible to discover the $W_R$ at the LHC, probing the Dirac Yukawa couplings will require a 100 TeV $pp$ collider. We also show that the observation of the trilepton signal at the LHC would indicate the presence of a non-minimal LRSM scenario.
We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; $U(1)_Ltimes U(1)_R$. Then three right-handed neutrinos are naturally required to achieve $U(1)_R$ anomaly cancellations, while several mirror fermions are also needed to do $U(1)_L$ anomaly cancellations. Then we formulate the model, and discuss its testability of the new gauge interactions at collider physics such as the large hadron collider (LHC) and the international linear collider (ILC). In particular, we can investigate chiral structure of the interactions by the analysis of forward-backward asymmetry based on polarized beam at the ILC.
We derive perturbativity constraints on beyond standard model scenarios with extra gauge groups, such as $SU(2)$ or $U(1)$, whose generators contribute to the electric charge, and show that there are both upper and lower limits on the additional gauge couplings, from the requirement that the couplings remain perturbative up to the grand unification theory (GUT) scale. This leads to stringent constraints on the masses of the corresponding gauge bosons and their collider phenomenology. We specifically focus on the models based on $SU(2)_Ltimes U(1)_{I_{3R}} times U(1)_{B-L}$ and the left-right symmetric models based on $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$, and discuss the implications of the perturbativity constraints for new gauge boson searches at current and future colliders. In particular, we find that the stringent flavor constraints in the scalar sector of left-right model set a lower bound on the right-handed scale $v_R gtrsim 10$ TeV, if all the gauge and quartic couplings are to remain perturbative up to the GUT scale. This precludes the prospects of finding the $Z_R$ boson in the left-right model at the LHC, even in the high-luminosity phase, and leaves only a narrow window for the $W_R$ boson. A much broader allowed parameter space, with the right-handed scale $v_R$ up to $simeq 87$ TeV, could be probed at the future 100 TeV collider.
In the recently proposed dark left-right gauge model of particle interactions, the left-handed fermion doublet $( u,e)_L$ is connected to its right-handed counterpart $(n,e)_R$ through a scalar bidoublet, but $ u_L$ couples to $n_R$ only through $phi_1^0$ which has no vacuum expectation value. The usual R parity, i.e. $R = (-)^{3B+L+2j}$, can be defined for this nonsupersymmetric model so that both $n$ and $Phi_1$ are odd together with $W_R^pm$. The lightest $n$ is thus a viable dark-matter candidate (scotino). Here we explore the phenomenology associated with the $SU(2)_R$ gauge group of this model, which allows it to appear at the TeV energy scale. The exciting possibility of $Z to 8$ charged leptons is discussed.
The recent diphoton excess signal at an invariant mass of 750 GeV can be interpreted in the framework of left-right symmetric models with additional scalar singlets and vector-like fermions. We propose a minimal scenario for such a purpose. Extending the LRSM framework to include these new vector-like fermionic fields, on the other hand, results in interesting phenomenological implications for the LRSM fermion masses and mixing. Furthermore, existence of such vector-like fermions can also have interesting implications for baryogenesis and the dark matter sector. The introduction of a real bi-triplet scalar which contains a potential DM candidate will allow the gauge couplings to unify at $approx 10^{17.7}$ GeV.