Do you want to publish a course? Click here

Implications of the diphoton excess on Left-Right models and gauge unification

219   0   0.0 ( 0 )
 Added by Frank Deppisch
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The recent diphoton excess signal at an invariant mass of 750 GeV can be interpreted in the framework of left-right symmetric models with additional scalar singlets and vector-like fermions. We propose a minimal scenario for such a purpose. Extending the LRSM framework to include these new vector-like fermionic fields, on the other hand, results in interesting phenomenological implications for the LRSM fermion masses and mixing. Furthermore, existence of such vector-like fermions can also have interesting implications for baryogenesis and the dark matter sector. The introduction of a real bi-triplet scalar which contains a potential DM candidate will allow the gauge couplings to unify at $approx 10^{17.7}$ GeV.



rate research

Read More

106 - D. T. Huong , P. V. Dong 2016
We propose the left-right models based on SU(3)_Cotimes SU(M)_L otimes SU(N)_R otimes U(1)_X gauge symmetry for (M,N)=(3,3), (2,3), and (3,2) that address the 750 GeV diphoton excess recently reported by the LHC. The fermion contents are minimally introduced, and the generation number must match the fundamental color number to cancel anomalies and ensure QCD asymptotic freedom. The diphoton excess arises from the field that breaks the left-right symmetry spontaneously in the first model, while for the last models it emerges as an explicit violation of the left-right symmetry. The neutrino masses, flavor-changing neutral currents, and new boson searches are also discussed.
We derive perturbativity constraints on beyond standard model scenarios with extra gauge groups, such as $SU(2)$ or $U(1)$, whose generators contribute to the electric charge, and show that there are both upper and lower limits on the additional gauge couplings, from the requirement that the couplings remain perturbative up to the grand unification theory (GUT) scale. This leads to stringent constraints on the masses of the corresponding gauge bosons and their collider phenomenology. We specifically focus on the models based on $SU(2)_Ltimes U(1)_{I_{3R}} times U(1)_{B-L}$ and the left-right symmetric models based on $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$, and discuss the implications of the perturbativity constraints for new gauge boson searches at current and future colliders. In particular, we find that the stringent flavor constraints in the scalar sector of left-right model set a lower bound on the right-handed scale $v_R gtrsim 10$ TeV, if all the gauge and quartic couplings are to remain perturbative up to the GUT scale. This precludes the prospects of finding the $Z_R$ boson in the left-right model at the LHC, even in the high-luminosity phase, and leaves only a narrow window for the $W_R$ boson. A much broader allowed parameter space, with the right-handed scale $v_R$ up to $simeq 87$ TeV, could be probed at the future 100 TeV collider.
We consider a version of Left-Right Symmetric Model in which the scalar sector consists of a Higgs bidoublet ($Phi$) with $B-L=0$, Higgs doublets ($H_{L,R}$) with $B-L=1$ and a charged scalar ($delta^+$) with $B-L=2$ leading to radiatively generated Majorana masses for neutrinos and thereby, leads to new physics contributions to neutrinoless double beta decay ($0 u beta beta$). We show that such a novel framework can be embedded in a non-SUSY $SO(10)$ GUT leading to successful gauge coupling unification at around $10^{16}$ GeV with the scale of left-right symmetry breaking around $10^{10}$ GeV. The model can also be extended to have left-right symmetry breaking at TeV scale, enabling detection of $W_R, Z_R$ bosons in LHC and future collider searches. In the context of neutrinoless double beta decay, this model can saturate the present bound from GERDA and KamLAND-Zen experiments. Also, we briefly explain how keV-MeV range RH neutrino arising from our model can saturate various astrophysical and cosmological constraints and can be considered as warm Dark Matter (DM) candidate to address various cosmological issues. We also discuss on left-right theories with Higgs doublets without having scalar bidoublet leading to fermion masses and mixings by inclusion of vector like fermions.
Given the tremendous phenomenological success of the Standard Model (SM) framework, it becomes increasingly important to understand to what extent its specific structure dynamically emerges from unification principles. In this study, we present a novel supersymmetric (SUSY) Grand Unification model based upon gauge trinification $[mathrm{SU}(3)]^3$ symmetry and a local $mathrm{SU}(2)_{mathrm{F}} times mathrm{U}(1)_{mathrm{F}}$ family symmetry. This framework is inspired by $mathrm{E}_8 to mathrm{E}_6times mathrm{SU}(2)_{mathrm{F}} times mathrm{U}(1)_{mathrm{F}}$ orbifold reduction pattern, with subsequent $mathrm{E}_6to [mathrm{SU}(3)]^3$ symmetry breaking step. In this framework, higher-dimensional operators of $mathrm{E}_6$ induce the threshold corrections in the gauge and Yukawa interactions leading, in particular, to only two distinct Yukawa couplings in the fundamental sector of the resulting $[mathrm{SU}(3)]^3times mathrm{SU}(2)_{mathrm{F}} times mathrm{U}(1)_{mathrm{F}}$ Lagrangian. Among the appealing features emergent in this framework are the Higgs-matter unification and a unique minimal three Higgs doublet scalar sector at the electroweak scale as well as tree-level hierarchies in the light fermion spectra consistent with those observed in nature. In addition, our framework reveals a variety of prospects for New Physics searches at the LHC and future colliders such as vector-like fermions, as well as rich scalar, gauge and neutrino sectors.
In this work, we propose minimal realizations for generating Dirac neutrino masses in the context of a right-handed abelian gauge extension of the Standard Model. Utilizing only $U(1)_R$ symmetry, we address and analyze the possibilities of Dirac neutrino mass generation via (a) textit{tree-level seesaw} and (b) textit{radiative correction at the one-loop level}. One of the presented radiative models implements the attractive textit{scotogenic} model that links neutrino mass with Dark Matter (DM), where the stability of the DM is guaranteed from a residual discrete symmetry emerging from $U(1)_R$. Since only the right-handed fermions carry non-zero charges under the $U(1)_R$, this framework leads to sizable and distinctive Left-Right asymmetry as well as Forward-Backward asymmetry discriminating from $U(1)_{B-L}$ models and can be tested at the colliders. We analyze the current experimental bounds and present the discovery reach limits for the new heavy gauge boson $Z^{prime}$ at the LHC and ILC. Furthermore, we also study the associated charged lepton flavor violating processes, dark matter phenomenology and cosmological constraints of these models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا