Do you want to publish a course? Click here

Experimental linear optical computing of the matrix permanent

90   0   0.0 ( 0 )
 Added by Yosep Kim
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Linear optical computing (LOC) with thermal light has recently gained attention because the problem is connected to the permanent of a Hermitian positive semidefinite matrix (HPSM), which is of importance in the computational complexity theory. Despite the several theoretical analyses on the computational structure of an HPSM in connection to LOC, the experimental demonstration and the computational complexity analysis via the linear optical system have not been performed yet. We present, herein, experimental LOC for estimating the permanent of an HPSM. From the linear optical experiments and theoretical analysis, we find that the LOC efficiency for a multiplicative error is dependent on the value of the permanent and that the lower bound of the computation time scales exponentially. Furthermore, our results are generalized and applied to LOC of permanents of unitary matrices, which can be implemented with a multi-port quantum interferometer involving single-photons at the input ports. We find that LOC with single-photons, for the permanent estimation, is on average less efficient than the most efficient classical algorithm known to date, even in ideal conditions.



rate research

Read More

Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2*2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [Nature 409, 46 (2001)] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. We review the original theory and its improvements, and we give a few examples of experimental two-qubit gates. We discuss the use of realistic components, the errors they induce in the computation, and how these errors can be corrected.
We present a linear-optical implementation of a class of two-qubit partial SWAP gates for polarization states of photons. Different gate operations, including the SWAP and entangling square root of SWAP, can be obtained by changing a classical control parameter -- namely the path difference in the interferometer. Reconstruction of output states, full process tomography and evaluation of entanglement of formation prove very good performance of the gates.
We report on the first experimental realization of optimal linear-optical controlled phase gates for arbitrary phases. The realized scheme is entirely flexible in that the phase shift can be tuned to any given value. All such controlled phase gates are optimal in the sense that they operate at the maximum possible success probabilities that are achievable within the framework of any postselected linear-optical implementation. The quantum gate is implemented using bulk optical elements and polarization encoding of qubit states. We have experimentally explored the remarkable observation that the optimum success probability is not monotone in the phase.
136 - Shuto Osawa , David S. Simon , 2018
All existing optical quantum walk approaches are based on the use of beamsplitters and multiple paths to explore the multitude of unitary transformations of quantum amplitudes in a Hilbert space. The beamsplitter is naturally a directionally biased device: the photon cannot travel in reverse direction. This causes rapid increases in optical hardware resources required for complex quantum walk applications, since the number of options for the walking particle grows with each step. Here we present the experimental demonstration of a directionally-unbiased linear-optical multiport, which allows reversibility of photon direction. An amplitude-controllable probability distribution matrix for a unitary three-edge vertex is reconstructed with only linear-optical devices. Such directionally-unbiased multiports allow direct execution of quantum walks over a multitude of complex graphs and in tensor networks. This approach would enable simulation of complex Hamiltonians of physical systems and quantum walk applications in a more efficient and compact setup, substantially reducing the required hardware resources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا