No Arabic abstract
All existing optical quantum walk approaches are based on the use of beamsplitters and multiple paths to explore the multitude of unitary transformations of quantum amplitudes in a Hilbert space. The beamsplitter is naturally a directionally biased device: the photon cannot travel in reverse direction. This causes rapid increases in optical hardware resources required for complex quantum walk applications, since the number of options for the walking particle grows with each step. Here we present the experimental demonstration of a directionally-unbiased linear-optical multiport, which allows reversibility of photon direction. An amplitude-controllable probability distribution matrix for a unitary three-edge vertex is reconstructed with only linear-optical devices. Such directionally-unbiased multiports allow direct execution of quantum walks over a multitude of complex graphs and in tensor networks. This approach would enable simulation of complex Hamiltonians of physical systems and quantum walk applications in a more efficient and compact setup, substantially reducing the required hardware resources.
It is shown that quantum walks on one-dimensional arrays of special linear-optical units allow the simulation of discrete-time Hamiltonian systems with distinct topological phases. In particular, a slightly modified version of the Su-Schrieffer-Heeger (SSH) system can be simulated, which exhibits states of nonzero winding number and has topologically protected boundary states. In the large-system limit this approach uses quadratically fewer resources to carry out quantum simulations than previous linear-optical approaches and can be readily generalized to higher-dimensional systems. The basic optical units that implement this simulation consist of combinations of optical multiports that allow photons to reverse direction.
Recently, a generalization of the standard optical multiport was proposed [Phys. Rev. A 93, 043845 (2016)]. These directionally unbiased multiports allow photons to reverse direction and exit backwards from the input port, providing a realistic linear optical scattering vertex for quantum walks on arbitrary graph structures. Here, it is shown that arrays of these multiports allow the simulation of a range of discrete-time Hamiltonian systems. Examples are described, including a case where both spatial and internal degrees of freedom are simulated. Because input ports also double as output ports, there is substantial savings of resources compared to feed-forward networks carrying out the same functions. The simulation is implemented in a scalable manner using only linear optics, and can be generalized to higher dimensional systems in a straightforward fashion, thus offering a concrete experimentally achievable implementation of graphical models of discrete-time quantum systems.
The concept of directionally unbiased optical multiports is introduced, in which photons may reflect back out the input direction. A linear-optical implementation is described, and the simplest three-port version studied. Symmetry arguments demonstrate potential for unusual quantum information processing applications. The devices impose group structures on two-photon entangled Bell states and act as universal Bell-state processors to implement probabilistic quantum gates acting on state symmetries. These multiports allow optical scattering experiments to be carried out on arbitrary undirected graphs via linear optics and raise the possibility of linear-optical information processing using group structures formed by optical qudit states.
The optical beam splitter is a widely-used device in photonics-based quantum information processing. Specifically, linear optical networks demand large numbers of beam splitters for unitary matrix realization. This requirement comes from the beam splitter property that a photon cannot go back out of the input ports, which we call directionally-biased. Because of this property, higher dimensional information processing tasks suffer from rapid device resource growth when beam splitters are used in a feed-forward manner. Directionally-unbiased linear-optical devices have been introduced recently to eliminate the directional bias, greatly reducing the numbers of required beam splitters when implementing complicated tasks. Analysis of some originally directional optical devices and basic principles of their conversion into directionally-unbiased systems form the base of this paper. Photonic quantum walk implementations are investigated as a main application of the use of directionally-unbiased systems. Several quantum walk procedures executed on graph networks constructed using directionally-unbiased nodes are discussed. A significant savings in hardware and other required resources when compared with traditional directionally-biased beam-splitter-based optical networks is demonstrated.
Cavity-free optical nonreciprocity components, which have an inherent strong asymmetric interaction between the forward- and backward-propagation direction of the probe field, are key to produce such as optical isolators and circulators. According to the proposal presented by Xia et al., [Phys. Rev. Lett. 121, 203602 (2018)], we experimentally build a device that uses cross-Kerr nonlinearity to achieve a cavity-free optical isolator and circulator. Its nonreciprocal behavior arises from the thermal motion of N-type configuration atoms, which induces a strong chiral cross-Kerr nonlinear response for the weak probe beam. We obtain a two-port optical isolator for up to 20 dB of isolation ratio in a specially designed Sagnac interferometer. The distinct propagation directions of the weak probe field determine its cross-phase shift and transmission, by which we demonstrate the accessibility of a four-port optical circulator.