No Arabic abstract
In low-light conditions, a conventional camera imaging pipeline produces sub-optimal images that are usually dark and noisy due to a low photon count and low signal-to-noise ratio (SNR). We present a data-driven approach that learns the desired properties of well-exposed images and reflects them in images that are captured in extremely low ambient light environments, thereby significantly improving the visual quality of these low-light images. We propose a new loss function that exploits the characteristics of both pixel-wise and perceptual metrics, enabling our deep neural network to learn the camera processing pipeline to transform the short-exposure, low-light RAW sensor data to well-exposed sRGB images. The results show that our method outperforms the state-of-the-art according to psychophysical tests as well as pixel-wise standard metrics and recent learning-based perceptual image quality measures.
Biologists all over the world use camera traps to monitor biodiversity and wildlife population density. The computer vision community has been making strides towards automating the species classification challenge in camera traps, but it has proven difficult to to apply models trained in one region to images collected in different geographic areas. In some cases, accuracy falls off catastrophically in new region, due to both changes in background and the presence of previously-unseen species. We propose a pipeline that takes advantage of a pre-trained general animal detector and a smaller set of labeled images to train a classification model that can efficiently achieve accurate results in a new region.
Advancements in deep learning have ignited an explosion of research on efficient hardware for embedded computer vision. Hardware vision acceleration, however, does not address the cost of capturing and processing the image data that feeds these algorithms. We examine the role of the image signal processing (ISP) pipeline in computer vision to identify opportunities to reduce computation and save energy. The key insight is that imaging pipelines should be designed to be configurable: to switch between a traditional photography mode and a low-power vision mode that produces lower-quality image data suitable only for computer vision. We use eight computer vision algorithms and a reversible pipeline simulation tool to study the imaging systems impact on vision performance. For both CNN-based and classical vision algorithms, we observe that only two ISP stages, demosaicing and gamma compression, are critical for task performance. We propose a new image sensor design that can compensate for skipping these stages. The sensor design features an adjustable resolution and tunable analog-to-digital converters (ADCs). Our proposed imaging systems vision mode disables the ISP entirely and configures the sensor to produce subsampled, lower-precision image data. This vision mode can save ~75% of the average energy of a baseline photography mode while having only a small impact on vision task accuracy.
We experimentally demonstrate an imaging technique based on quantum noise modifications after interaction with an opaque object. This approach is particularly attractive for applications requiring weak illumination. We implement a homodyne-like detection scheme which allows us to eliminate detrimental effects of the cameras dark noise. Here we illuminate the object with squeezed vacuum containing less than one photon per frame, generated in an atomic ensemble, and reconstruct the shape of the object with higher contrast than the direct intensity imaging using 1000 times more photons.
The success of deep denoisers on real-world color photographs usually relies on the modeling of sensor noise and in-camera signal processing (ISP) pipeline. Performance drop will inevitably happen when the sensor and ISP pipeline of test images are different from those for training the deep denoisers (i.e., noise discrepancy). In this paper, we present an unpaired learning scheme to adapt a color image denoiser for handling test images with noise discrepancy. We consider a practical training setting, i.e., a pre-trained denoiser, a set of test noisy images, and an unpaired set of clean images. To begin with, the pre-trained denoiser is used to generate the pseudo clean images for the test images. Pseudo-ISP is then suggested to jointly learn the pseudo ISP pipeline and signal-dependent rawRGB noise model using the pairs of test and pseudo clean images. We further apply the learned pseudo ISP and rawRGB noise model to clean color images to synthesize realistic noisy images for denoiser adaption. Pseudo-ISP is effective in synthesizing realistic noisy sRGB images, and improved denoising performance can be achieved by alternating between Pseudo-ISP training and denoiser adaption. Experiments show that our Pseudo-ISP not only can boost simple Gaussian blurring-based denoiser to achieve competitive performance against CBDNet, but also is effective in improving state-of-the-art deep denoisers, e.g., CBDNet and RIDNet.
The lensless pinhole camera is perhaps the earliest and simplest form of an imaging system using only a pinhole-sized aperture in place of a lens. They can capture an infinite depth-of-field and offer greater freedom from optical distortion over their lens-based counterparts. However, the inherent limitations of a pinhole system result in lower sharpness from blur caused by optical diffraction and higher noise levels due to low light throughput of the small aperture, requiring very long exposure times to capture well-exposed images. In this paper, we explore an image restoration pipeline using deep learning and domain-knowledge of the pinhole system to enhance the pinhole image quality through a joint denoise and deblur approach. Our approach allows for more practical exposure times for hand-held photography and provides higher image quality, making it more suitable for daily photography compared to other lensless cameras while keeping size and cost low. This opens up the potential of pinhole cameras to be used in smaller devices, such as smartphones.