Do you want to publish a course? Click here

A General Framework for Information Extraction using Dynamic Span Graphs

100   0   0.0 ( 0 )
 Added by Yi Luan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We introduce a general framework for several information extraction tasks that share span representations using dynamically constructed span graphs. The graphs are constructed by selecting the most confident entity spans and linking these nodes with confidence-weighted relation types and coreferences. The dynamic span graph allows coreference and relation type confidences to propagate through the graph to iteratively refine the span representations. This is unlike previous multi-task frameworks for information extraction in which the only interaction between tasks is in the shared first-layer LSTM. Our framework significantly outperforms the state-of-the-art on multiple information extraction tasks across multiple datasets reflecting different domains. We further observe that the span enumeration approach is good at detecting nested span entities, with significant F1 score improvement on the ACE dataset.

rate research

Read More

Most modern Information Extraction (IE) systems are implemented as sequential taggers and only model local dependencies. Non-local and non-sequential context is, however, a valuable source of information to improve predictions. In this paper, we introduce GraphIE, a framework that operates over a graph representing a broad set of dependencies between textual units (i.e. words or sentences). The algorithm propagates information between connected nodes through graph convolutions, generating a richer representation that can be exploited to improve word-level predictions. Evaluation on three different tasks --- namely textual, social media and visual information extraction --- shows that GraphIE consistently outperforms the state-of-the-art sequence tagging model by a significant margin.
87 - Gaochen Wu , Bin Xu , Dejie Chang 2021
Span-extraction reading comprehension models have made tremendous advances enabled by the availability of large-scale, high-quality training datasets. Despite such rapid progress and widespread application, extractive reading comprehension datasets in languages other than English remain scarce, and creating such a sufficient amount of training data for each language is costly and even impossible. An alternative to creating large-scale high-quality monolingual span-extraction training datasets is to develop multilingual modeling approaches and systems which can transfer to the target language without requiring training data in that language. In this paper, in order to solve the scarce availability of extractive reading comprehension training data in the target language, we propose a multilingual extractive reading comprehension approach called XLRC by simultaneously modeling the existing extractive reading comprehension training data in a multilingual environment using self-adaptive attention and multilingual attention. Specifically, we firstly construct multilingual parallel corpora by translating the existing extractive reading comprehension datasets (i.e., CMRC 2018) from the target language (i.e., Chinese) into different language families (i.e., English). Secondly, to enhance the final target representation, we adopt self-adaptive attention (SAA) to combine self-attention and inter-attention to extract the semantic relations from each pair of the target and source languages. Furthermore, we propose multilingual attention (MLA) to learn the rich knowledge from various language families. Experimental results show that our model outperforms the state-of-the-art baseline (i.e., RoBERTa_Large) on the CMRC 2018 task, which demonstrate the effectiveness of our proposed multi-lingual modeling approach and show the potentials in multilingual NLP tasks.
142 - Shifeng Liu , Yifang Sun , Bing Li 2021
The rapid growth in published clinical trials makes it difficult to maintain up-to-date systematic reviews, which requires finding all relevant trials. This leads to policy and practice decisions based on out-of-date, incomplete, and biased subsets of available clinical evidence. Extracting and then normalising Population, Intervention, Comparator, and Outcome (PICO) information from clinical trial articles may be an effective way to automatically assign trials to systematic reviews and avoid searching and screening - the two most time-consuming systematic review processes. We propose and test a novel approach to PICO span detection. The major difference between our proposed method and previous approaches comes from detecting spans without needing annotated span data and using only crowdsourced sentence-level annotations. Experiments on two datasets show that PICO span detection results achieve much higher results for recall when compared to fully supervised methods with PICO sentence detection at least as good as human annotations. By removing the reliance on expert annotations for span detection, this work could be used in human-machine pipeline for turning low-quality crowdsourced, and sentence-level PICO annotations into structured information that can be used to quickly assign trials to relevant systematic reviews.
This paper proposes a novel model for predicting subgraphs in dynamic graphs, an extension of traditional link prediction. This proposed end-to-end model learns a mapping from the subgraph structures in the current snapshot to the subgraph structures in the next snapshot directly, i.e., edge existence among multiple nodes in the subgraph. A new mechanism named cross-attention with a twin-tower module is designed to integrate node attribute information and topology information collaboratively for learning subgraph evolution. We compare our model with several state-of-the-art methods for subgraph prediction and subgraph pattern prediction in multiple real-world homogeneous and heterogeneous dynamic graphs, respectively. Experimental results demonstrate that our model outperforms other models in these two tasks, with a gain increase from 5.02% to 10.88%.
350 - Lu Xu , Yew Ken Chia , Lidong Bing 2021
Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end manner but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا