Do you want to publish a course? Click here

Application of Time-Fractional Order Bloch Equation in Magnetic Resonance Fingerprinting

206   0   0.0 ( 0 )
 Added by Lixian Zou
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic resonance fingerprinting (MRF) is one novel fast quantitative imaging framework for simultaneous quantification of multiple parameters with pseudo-randomized acquisition patterns. The accuracy of the resulting multi-parameters is very important for clinical applications. In this paper, we derived signal evolutions from the anomalous relaxation using a fractional calculus. More specifically, we utilized time-fractional order extension of the Bloch equations to generate dictionary to provide more complex system descriptions for MRF applications. The representative results of phantom experiments demonstrated the good accuracy performance when applying the time-fractional order Bloch equations to generate dictionary entries in the MRF framework. The utility of the proposed method is also validated by in-vivo study.



rate research

Read More

423 - Qing Li , Xiaozhi Cao , Huihui Ye 2018
Purpose: To demonstrate an ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) method that can simultaneously quantify tissue relaxometries for muscle and bone in musculoskeletal systems and tissue components in brain and therefore can synthesize pseudo-CT images. Methods: A FISP-MRF sequence with half pulse excitation and half spoke radial acquisition was designed to sample fast T2 decay signals. Sinusoidal echo time (TE) pattern was applied to enhance MRF sensitivity for tissues with short and ultrashort T2 values. The performance of UTE-MRF was evaluated via simulations, phantoms, and in vivo experiments. Results: A minimal TE of 0.05 ms was achieved in UTE-MRF. Simulations indicated that extension of TE sampling increased T2 quantification accuracy in cortical bone and tendon, and had little impact on long T2 muscle quantifications. For a rubber phantom, an average T1/T2 of 162/1.07 ms from UTE-MRF were compared well with gold standard T2 of 190 ms from IR-UTE and T2* of 1.03 ms from UTE sequence. For a long T2 agarose phantom, the linear regression slope between UTE-MRF and gold standard was 1.07 (R2=0.991) for T1 and 1.04 (R2=0.994) for T2. In vivo experiments showed the detection of cortical bone and Achilles tendon, where the averaged T2 was respectively 1.0 ms and 15 ms. Scalp images were in good agreement with CT. Conclusion: UTE-MRF with sinusoidal TE variations shows its capability to produce pseudo-CT images and simultaneously output T1, T2, proton density, and B0 maps for tissues with long T2 and short/ultrashort T2 in the brain and musculoskeletal system.
Magnetic Resonance Fingerprinting (MRF) is a method to extract quantitative tissue properties such as T1 and T2 relaxation rates from arbitrary pulse sequences using conventional magnetic resonance imaging hardware. MRF pulse sequences have thousands of tunable parameters which can be chosen to maximize precision and minimize scan time. Here we perform de novo automated design of MRF pulse sequences by applying physics-inspired optimization heuristics. Our experimental data suggests systematic errors dominate over random errors in MRF scans under clinically-relevant conditions of high undersampling. Thus, in contrast to prior optimization efforts, which focused on statistical error models, we use a cost function based on explicit first-principles simulation of systematic errors arising from Fourier undersampling and phase variation. The resulting pulse sequences display features qualitatively different from previously used MRF pulse sequences and achieve fourfold shorter scan time than prior human-designed sequences of equivalent precision in T1 and T2. Furthermore, the optimization algorithm has discovered the existence of MRF pulse sequences with intrinsic robustness against shading artifacts due to phase variation.
Purpose: To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. Methods: We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the N${alpha}$-amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 ${mu}$T; in vivo: 0-4 ${mu}$T) with a total acquisition time of <=2 minutes. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T1 and T2* relaxation times. Results: The chemical exchange rates of the N${alpha}$-amine protons of L-Arg were significantly (p<0.0001) correlated with the rates measured with the Quantitation of Exchange using Saturation Power method. Similarly, the L-Arg concentrations determined using MRF were significantly (p<0.0001) correlated with the known concentrations. The pH dependence of the exchange rate was well fit (R2=0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (36.3+-12.9 Hz) was in good agreement with that measured previously with the Water Exchange spectroscopy method (28.6+-7.4 Hz). The semi-solid proton volume fraction was elevated in white (11.2+-1.7%) compared to gray (7.6+-1.8%) matter brain regions in agreement with previous magnetization transfer studies. Conclusion: CEST-MRF provides a method for fast, quantitative CEST imaging.
138 - Mingrui Yang , Yun Jiang , Dan Ma 2020
Purpose: This work proposes a novel approach to efficiently generate MR fingerprints for MR fingerprinting (MRF) problems based on the unsupervised deep learning model generative adversarial networks (GAN). Methods: The GAN model is adopted and modified for better convergence and performance, resulting in an MRF specific model named GAN-MRF. The GAN-MRF model is trained, validated, and tested using different MRF fingerprints simulated from the Bloch equations with certain MRF sequence. The performance and robustness of the model are further tested by using in vivo data collected on a 3 Tesla scanner from a healthy volunteer together with MRF dictionaries with different sizes. T1, T2 maps are generated and compared quantitatively. Results: The validation and testing curves for the GAN-MRF model show no evidence of high bias or high variance problems. The sample MRF fingerprints generated from the trained GAN-MRF model agree well with the benchmark fingerprints simulated from the Bloch equations. The in vivo T1, T2 maps generated from the GAN-MRF fingerprints are in good agreement with those generated from the Bloch simulated fingerprints, showing good performance and robustness of the proposed GAN-MRF model. Moreover, the MRF dictionary generation time is reduced from hours to sub-second for the testing dictionary. Conclusion: The GAN-MRF model enables a fast and accurate generation of the MRF fingerprints. It significantly reduces the MRF dictionary generation process and opens the door for real-time applications and sequence optimization problems.
Magnetic resonance Fingerprinting (MRF) is a relatively new multi-parametric quantitative imaging method that involves a two-step process: (i) reconstructing a series of time frames from highly-undersampled non-Cartesian spiral k-space data and (ii) pattern matching using the time frames to infer tissue properties (e.g., T1 and T2 relaxation times). In this paper, we introduce a novel end-to-end deep learning framework to seamlessly map the tissue properties directly from spiral k-space MRF data, thereby avoiding time-consuming processing such as the nonuniform fast Fourier transform (NUFFT) and the dictionary-based Fingerprint matching. Our method directly consumes the non-Cartesian k- space data, performs adaptive density compensation, and predicts multiple tissue property maps in one forward pass. Experiments on both 2D and 3D MRF data demonstrate that quantification accuracy comparable to state-of-the-art methods can be accomplished within 0.5 second, which is 1100 to 7700 times faster than the original MRF framework. The proposed method is thus promising for facilitating the adoption of MRF in clinical settings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا