Do you want to publish a course? Click here

Towards Computational Models and Applications of Insect Visual Systems for Motion Perception: A Review

320   0   0.0 ( 0 )
 Added by Qinbing Fu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Motion perception is a critical capability determining a variety of aspects of insects life, including avoiding predators, foraging and so forth. A good number of motion detectors have been identified in the insects visual pathways. Computational modelling of these motion detectors has not only been providing effective solutions to artificial intelligence, but also benefiting the understanding of complicated biological visual systems. These biological mechanisms through millions of years of evolutionary development will have formed solid modules for constructing dynamic vision systems for future intelligent machines. This article reviews the computational motion perception models originating from biological research of insects visual systems in the literature. These motion perception models or neural networks comprise the looming sensitive neuronal models of lobula giant movement detectors (LGMDs) in locusts, the translation sensitive neural systems of direction selective neurons (DSNs) in fruit flies, bees and locusts, as well as the small target motion detectors (STMDs) in dragonflies and hover flies. We also review the applications of these models to robots and vehicles. Through these modelling studies, we summarise the methodologies that generate different direction and size selectivity in motion perception. At last, we discuss about multiple systems integration and hardware realisation of these bio-inspired motion perception models.



rate research

Read More

120 - Qifei Wang 2016
This paper summarizes the recent progress in human motion analysis and its applications. In the beginning, we reviewed the motion capture systems and the representation model of humans motion data. Next, we sketched the advanced human motion data processing technologies, including motion data filtering, temporal alignment, and segmentation. The following parts overview the state-of-the-art approaches of action recognition and dynamics measuring since these two are the most active research areas in human motion analysis. The last part discusses some emerging applications of the human motion analysis in healthcare, human robot interaction, security surveillance, virtual reality and animation. The promising research topics of human motion analysis in the future is also summarized in the last part.
Deep neural networks have shown striking progress and obtained state-of-the-art results in many AI research fields in the recent years. However, it is often unsatisfying to not know why they predict what they do. In this paper, we address the problem of interpreting Visual Question Answering (VQA) models. Specifically, we are interested in finding what part of the input (pixels in images or words in questions) the VQA model focuses on while answering the question. To tackle this problem, we use two visualization techniques -- guided backpropagation and occlusion -- to find important words in the question and important regions in the image. We then present qualitative and quantitative analyses of these importance maps. We found that even without explicit attention mechanisms, VQA models may sometimes be implicitly attending to relevant regions in the image, and often to appropriate words in the question.
Visual sensation and perception refers to the process of sensing, organizing, identifying, and interpreting visual information in environmental awareness and understanding. Computational models inspired by visual perception have the characteristics of complexity and diversity, as they come from many subjects such as cognition science, information science, and artificial intelligence. In this paper, visual perception computational models oriented deep learning are investigated from the biological visual mechanism and computational vision theory systematically. Then, some points of view about the prospects of the visual perception computational models are presented. Finally, this paper also summarizes the current challenges of visual perception and predicts its future development trends. Through this survey, it will provide a comprehensive reference for research in this direction.
57 - Aref Hakimzadeh , Yanbo Xue , 2021
In Maurice Merleau-Pontys phenomenology of perception, analysis of perception accounts for an element of intentionality, and in effect therefore, perception and action cannot be viewed as distinct procedures. In the same line of thinking, Alva No{e} considers perception as a thoughtful activity that relies on capacities for action and thought. Here, by looking into psychology as a source of inspiration, we propose a computational model for the action involved in visual perception based on the notion of equilibrium as defined by Jean Piaget. In such a model, Piagets equilibrium reflects the minds status, which is used to control the observation process. The proposed model is built around a modified version of convolutional neural networks (CNNs) with enhanced filter performance, where characteristics of filters are adaptively adjusted via a high-level control signal that accounts for the thoughtful activity in perception. While the CNN plays the role of the visual system, the control signal is assumed to be a product of mind.
Some biological mechanisms of early vision are comparatively well understood, but they have yet to be evaluated for their ability to accurately predict and explain human judgments of image similarity. From well-studied simple connectivity patterns in early vision, we derive a novel formalization of the psychophysics of similarity, showing the differential geometry that provides accurate and explanatory accounts of perceptual similarity judgments. These predictions then are further improved via simple regression on human behavioral reports, which in turn are used to construct more elaborate hypothesized neural connectivity patterns. Both approaches outperform standard successful measures of perceived image fidelity from the literature, as well as providing explanatory principles of similarity perception.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا