Do you want to publish a course? Click here

Fundamental parameter accuracy of DA and DB white dwarfs in Gaia Data Release 2

73   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a comparison of spectroscopic analyses for hydrogen (DA) and helium atmosphere (DB) white dwarfs with Gaia Data Release 2 (DR2) parallaxes and photometry. We assume a reddening law and a mass-radius relation to connect the effective temperatures (Teff) and surface gravities (log g) to masses and radii. This allows the comparison of two largely independent sets of fundamental parameters for 7039 DA and 521 DB stars with high-quality observations. This subset of the Gaia white dwarf sample is large enough to detect systematic trends in the derived parameters. We find that spectroscopic and photometric parameters generally agree within uncertainties when the expectation of a single star is verified. Gaia allows the identification of a small systematic offset in the temperature scale between the two techniques, as well as confirming a small residual high-mass bump in the DA mass distribution around 11,000-13,000 K. This assessment of the accuracy of white dwarf fundamental parameters derived from Gaia is a first step in understanding systematic effects in related astrophysical applications such as the derivation of the local stellar formation history, initial-to-final mass relation, and statistics of evolved planetary systems.



rate research

Read More

We present a detailed spectroscopic and photometric analysis of DA and DB white dwarfs drawn from the Sloan Digital Sky Survey with trigonometric parallax measurements available from the Gaia mission. The temperature and mass scales obtained from fits to $ugriz$ photometry appear reasonable for both DA and DB stars, with almost identical mean masses of $langle M rangle = 0.617~M_odot$ and $0.620~M_odot$, respectively. The comparison with similar results obtained from spectroscopy reveals several problems with our model spectra for both pure hydrogen and pure helium compositions. In particular, we find that the spectroscopic temperatures of DA stars exceed the photometric values by $sim$10% above $T_{rm eff}sim14,000$~K, while for DB white dwarfs, we observe large differences between photometric and spectroscopic masses below $T_{rm eff}sim16,000$~K. We attribute these discrepancies to the inaccurate treatment of Stark and van der Waals broadening in our model spectra, respectively. Despite these problems, the mean masses derived from spectroscopy --- $langle M rangle = 0.615~M_odot$ and $0.625~M_odot$ for the DA and DB stars, respectively --- agree extremely well with those obtained from photometry. Our analysis also reveals the presence of several unresolved double degenerate binaries, including DA+DA, DB+DB, DA+DB, and even DA+DC systems. We finally take advantage of the Gaia parallaxes to test the theoretical mass-radius relation for white dwarfs. We find that 65% of the white dwarfs are consistent within the 1$sigma$ confidence level with the predictions of the mass-radius relation, thus providing strong support to the theory of stellar degeneracy.
White dwarfs with helium-dominated atmospheres comprise approximately 20% of all white dwarfs. Among the open questions are the total masses and the origin of the hydrogen traces observed in a large number and the nature of the deficit of DBs in the range from 30000 - 45000K. We use the largest-ever sample (by a factor of 10) provided by the Sloan Digital Sky Survey (SDSS) to study these questions. The photometric and spectroscopic data of 1107 helium-rich objects from the SDSS are analyzed using theoretical model atmospheres. Along with the effective temperature and surface gravity, we also determine hydrogen and calcium abundances or upper limits for all objects. The atmosphere models are extended with envelope calculations to determine the extent of the helium convection zones and thus the total amount of hydrogen and calcium present. When accounting for problems in determining surface gravities at low Teff, we find an average mass for helium-dominated white dwarfs of 0.606+-0.004 Msun, which is very similar to the latest determinations for DAs. There are 32% of the sample with detected hydrogen, but this increases to 75% if only the objects with the highest signal-to-noise ratios are considered. In addition, 10-12% show traces of calcium, which must come from an external source. The interstellar medium (ISM) is ruled out by the fact that all polluted objects show a Ca/H ratio that is much larger than solar. We also present arguments that demonstrate that the hydrogen is very likely not accreted from the ISM but is the result of convective mixing of a residual thin hydrogen layer with the developing helium convection zone. It is very important to carefully consider the bias from observational selection effects when drawing these conclusions.
We present the methods devised to identify the BY Dra variables candidates in Gaia DR2 and infer their variability parameters. BY Dra candidates are pre-selected from their position in the HR diagram, built from Gaia parallaxes, $G$ magnitudes, and $(G_{BP} - G_{RP})$ colours. Since the time evolution of the stellar active region can disrupt the coherence of the signal, segments not much longer than their expected evolution timescale are extracted from the entire photometric time-series and period search algorithms are applied to each segment. For the Gaia DR2, we select sources having similar period in at least two segments as candidates BY Dra. Results are further filtered considering the time series phase coverage and the expected approximate light curve shape. Gaia DR2 includes rotational periods and modulation amplitudes of 147 535 BY Dra candidates. The data unveil the existence of two populations with distinctive period and amplitude distributions. The sample covers 38% of the whole sky when divided in bins (HEALPix) of $approx$0.84 square degrees and we estimate that represents 0.7 -- 5 % of all BY Dra stars potentially detectable by Gaia. The preliminary data contained in Gaia DR2 illustrate the vast and unique information that the mission is going to provide on stellar rotation and magnetic activity. This information, complemented by Gaia exquisite parallaxes, proper motions, and astrophysical parameter, is opening new and unique perspectives for our understanding of the evolution of stellar angular momentum and dynamo action.
The main objective of the present work is to extend these investigations by computing the gravity and limb-darkening coefficients for white dwarf atmosphere models with hydrogen, helium, or mixed compositions (types DA, DB, and DBA). We computed gravity and limb-darkening coefficients for DA, DB, and DBA white dwarfs atmosphere models, covering the transmission curves of the Sloan, UBVRI, Kepler, TESS, and Gaia photometric systems. Specific calculations for the HiPERCAM instrument were also carried out. For all calculations of the limb-darkening coefficients we used the least-squares method. Concerning the effects of tidal and rotational distortions, we also computed for the first time the gravity-darkening coefficients $y(lambda)$ for white dwarfs using the same models of stellar atmospheres as in the case of limb-darkening. A more general differential equation was introduced to derive these quantities, including the partial derivative $left(partial{ln I_o(lambda)}/{partial{ln g}}right)_{T_{rm eff}}$. Six laws were adopted to describe the specific intensity distribution: linear, quadratic, square root, logarithmic, power-2, and a more general one with four coefficients. The computations are presented for the chemical compositions log[H/He] = $-$10.0 (DB), $-$2.0 (DBA) and He/H = 0 (DA), with log g varying between 5.0 and 9.5 and effective temperatures between 3750 K-100,000 K. For effective temperatures higher than 40,000 K, the models were also computed adopting nonlocal thermal equilibirum (DA). The adopted mixing-length parameters are ML2/$alpha = 0.8$ (DA case) and 1.25 (DB and DBA). The results are presented in the form of 112 tables. Additional calculations, such as for other photometric systems and/or different values of log[H/He], $log g,$ and T$_{rm eff}$ can be performed upon request.
Over 1500 DBZ or DZ white dwarfs (WDs) have been observed so far, and polluted atmospheres with metal elements have been found among these WDs. The surface heavy element abundances of known DBZ or DZ WDs show an evolutionary sequence. By using Modules for Experiments in Stellar Evolution, we create DB WDs, and simulate the element diffusion due to high gravitational fields and the metal-rich material accretion coming from the planet disrupted by the WD. In our models, the input parameters ($alpha_{rm MLT}$, $alpha_{rm th}$ and $Z$) have very weak effect on DB WD structures including interior temperatures, chemical profiles and convective zones.The mass-accretion rate and the effective temperature of DB WDs determine the abundances of heavy elements. The evolutionary sequence of Ca element for about 1500 observed DB or DBZ WDs cannot be explained by the model with a constant mass-accretion rate, but is consistent well with the model in which the mass-accretion rate decreases by one power law when $T_{rm eff}>10$ kK and slightly increases by another power law when $T_{rm eff}<10$ kK. The observed DB WD evolutionary sequence of heavy element abundances originates from WD cooling and the change of mass-accretion rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا