Do you want to publish a course? Click here

The Cry Wolf Effect in Evacuation: a Game-Theoretic Approach

209   0   0.0 ( 0 )
 Added by Alexandros Rigos
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In todays terrorism-prone and security-focused world, evacuation emergencies, drills, and false alarms are becoming more and more common. Compliance to an evacuation order made by an authority in case of emergency can play a key role in the outcome of an emergency. In case an evacuee experiences repeated emergency scenarios which may be a false alarm (e.g., an evacuation drill, a false bomb threat, etc.) or an actual threat, the Aesops cry wolf effect (repeated false alarms decrease order compliance) can severely affect his/her likelihood to evacuate. To analyse this key unsolved issue of evacuation research, a game-theoretic approach is proposed. Game theory is used to explore mutual best responses of an evacuee and an authority. In the proposed model the authority obtains a signal of whether there is a threat or not and decides whether to order an evacuation or not. The evacuee, after receiving an evacuation order, subsequently decides whether to stay or leave based on posterior beliefs that have been updated in response to the authoritys action. Best-responses are derived and Sequential equilibrium and Perfect Bayesian Equilibrium are used as solution concepts (refining equilibria with the intuitive criterion). Model results highlight the benefits of announced evacuation drills and suggest that improving the accuracy of threat detection can prevent large inefficiencies associated with the cry wolf effect.



rate research

Read More

K-cores are maximal induced subgraphs where all vertices have degree at least k. These dense patterns have applications in community detection, network visualization and protein function prediction. However, k-cores can be quite unstable to network modifications, which motivates the question: How resilient is the k-core structure of a network, such as the Web or Facebook, to edge deletions? We investigate this question from an algorithmic perspective. More specifically, we study the problem of computing a small set of edges for which the removal minimizes the $k$-core structure of a network. This paper provides a comprehensive characterization of the hardness of the k-core minimization problem (KCM), including innaproximability and fixed-parameter intractability. Motivated by such a challenge in terms of algorithm design, we propose a novel algorithm inspired by Shapley value -- a cooperative game-theoretic concept -- that is able to leverage the strong interdependencies in the effects of edge removals in the search space. As computing Shapley values is also NP-hard, we efficiently approximate them using a randomized algorithm with probabilistic guarantees. Our experiments, using several real datasets, show that the proposed algorithm outperforms competing solutions in terms of k-core minimization while being able to handle large graphs. Moreover, we illustrate how KCM can be applied in the analysis of the k-core resilience of networks.
This paper considers a game-theoretic formulation of the covert communications problem with finite blocklength, where the transmitter (Alice) can randomly vary her transmit power in different blocks, while the warden (Willie) can randomly vary his detection threshold in different blocks. In this two player game, the payoff for Alice is a combination of the coding rate to the receiver (Bob) and the detection error probability at Willie, while the payoff for Willie is the negative of his detection error probability. Nash equilibrium solutions to the game are obtained, and shown to be efficiently computable using linear programming. For less covert requirements, our game-theoretic approach can achieve significantly higher coding rates than uniformly distributed transmit powers. We then consider the situation with an additional jammer, where Alice and the jammer can both vary their powers. We pose a two player game where Alice and the jammer jointly comprise one player, with Willie the other player. The use of a jammer is shown in numerical simulations to lead to further significant performance improvements.
157 - Feiran Jia , Aditya Mate , Zun Li 2021
We present the design and analysis of a multi-level game-theoretic model of hierarchical policy-making, inspired by policy responses to the COVID-19 pandemic. Our model captures the potentially mismatched priorities among a hierarchy of policy-makers (e.g., federal, state, and local governments) with respect to two main cost components that have opposite dependence on the policy strength, such as post-intervention infection rates and the cost of policy implementation. Our model further includes a crucial third factor in decisions: a cost of non-compliance with the policy-maker immediately above in the hierarchy, such as non-compliance of state with federal policies. Our first contribution is a closed-form approximation of a recently published agent-based model to compute the number of infections for any implemented policy. Second, we present a novel equilibrium selection criterion that addresses common issues with equilibrium multiplicity in our setting. Third, we propose a hierarchical algorithm based on best response dynamics for computing an approximate equilibrium of the hierarchical policy-making game consistent with our solution concept. Finally, we present an empirical investigation of equilibrium policy strategies in this game in terms of the extent of free riding as well as fairness in the distribution of costs depending on game parameters such as the degree of centralization and disagreements about policy priorities among the agents.
Federated learning is a distributed learning paradigm where multiple agents, each only with access to local data, jointly learn a global model. There has recently been an explosion of research aiming not only to improve the accuracy rates of federated learning, but also provide certain guarantees around social good properties such as total error. One branch of this research has taken a game-theoretic approach, and in particular, prior work has viewed federated learning as a hedonic game, where error-minimizing players arrange themselves into federating coalitions. This past work proves the existence of stable coalition partitions, but leaves open a wide range of questions, including how far from optimal these stable solutions are. In this work, we motivate and define a notion of optimality given by the average error rates among federating agents (players). First, we provide and prove the correctness of an efficient algorithm to calculate an optimal (error minimizing) arrangement of players. Next, we analyze the relationship between the stability and optimality of an arrangement. First, we show that for some regions of parameter space, all stable arrangements are optimal (Price of Anarchy equal to 1). However, we show this is not true for all settings: there exist examples of stable arrangements with higher cost than optimal (Price of Anarchy greater than 1). Finally, we give the first constant-factor bound on the performance gap between stability and optimality, proving that the total error of the worst stable solution can be no higher than 9 times the total error of an optimal solution (Price of Anarchy bound of 9).
To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL). The simplest form is independent reinforcement learning (InRL), where each agent treats its experience as part of its (non-stationary) environment. In this paper, we first observe that policies learned using InRL can overfit to the other agents policies during training, failing to sufficiently generalize during execution. We introduce a new metric, joint-policy correlation, to quantify this effect. We describe an algorithm for general MARL, based on approximate best responses to mixtures of policies generated using deep reinforcement learning, and empirical game-theoretic analysis to compute meta-strategies for policy selection. The algorithm generalizes previous ones such as InRL, iterated best response, double oracle, and fictitious play. Then, we present a scalable implementation which reduces the memory requirement using decoupled meta-solvers. Finally, we demonstrate the generality of the resulting policies in two partially observable settings: gridworld coordination games and poker.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا