No Arabic abstract
Learning high-quality embeddings for rare words is a hard problem because of sparse context information. Mimicking (Pinter et al., 2017) has been proposed as a solution: given embeddings learned by a standard algorithm, a model is first trained to reproduce embeddings of frequent words from their surface form and then used to compute embeddings for rare words. In this paper, we introduce attentive mimicking: the mimicking model is given access not only to a words surface form, but also to all available contexts and learns to attend to the most informative and reliable contexts for computing an embedding. In an evaluation on four tasks, we show that attentive mimicking outperforms previous work for both rare and medium-frequency words. Thus, compared to previous work, attentive mimicking improves embeddings for a much larger part of the vocabulary, including the medium-frequency range.
Pretraining deep neural network architectures with a language modeling objective has brought large improvements for many natural language processing tasks. Exemplified by BERT, a recently proposed such architecture, we demonstrate that despite being trained on huge amounts of data, deep language models still struggle to understand rare words. To fix this problem, we adapt Attentive Mimicking, a method that was designed to explicitly learn embeddings for rare words, to deep language models. In order to make this possible, we introduce one-token approximation, a procedure that enables us to use Attentive Mimicking even when the underlying language model uses subword-based tokenization, i.e., it does not assign embeddings to all words. To evaluate our method, we create a novel dataset that tests the ability of language models to capture semantic properties of words without any task-specific fine-tuning. Using this dataset, we show that adding our adapted version of Attentive Mimicking to BERT does indeed substantially improve its understanding of rare words.
Question paraphrase identification is a key task in Community Question Answering (CQA) to determine if an incoming question has been previously asked. Many current models use word embeddings to identify duplicate questions, but the use of topic models in feature-engineered systems suggests that they can be helpful for this task, too. We therefore propose two ways of merging topics with word embeddings (early vs. late fusion) in a new neural architecture for question paraphrase identification. Our results show that our system outperforms neural baselines on multiple CQA datasets, while an ablation study highlights the importance of topics and especially early topic-embedding fusion in our architecture.
This work lists and describes the main recent strategies for building fixed-length, dense and distributed representations for words, based on the distributional hypothesis. These representations are now commonly called word embeddings and, in addition to encoding surprisingly good syntactic and semantic information, have been proven useful as extra features in many downstream NLP tasks.
Word embeddings are usually derived from corpora containing text from many individuals, thus leading to general purpose representations rather than individually personalized representations. While personalized embeddings can be useful to improve language model performance and other language processing tasks, they can only be computed for people with a large amount of longitudinal data, which is not the case for new users. We propose a new form of personalized word embeddings that use demographic-specific word representations derived compositionally from full or partial demographic information for a user (i.e., gender, age, location, religion). We show that the resulting demographic-aware word representations outperform generic word representations on two tasks for English: language modeling and word associations. We further explore the trade-off between the number of available attributes and their relative effectiveness and discuss the ethical implications of using them.
Many NLP applications require disambiguating polysemous words. Existing methods that learn polysemous word vector representations involve first detecting various senses and optimizing the sense-specific embeddings separately, which are invariably more involved than single sense learning methods such as word2vec. Evaluating these methods is also problematic, as rigorous quantitative evaluations in this space is limited, especially when compared with single-sense embeddings. In this paper, we propose a simple method to learn a word representation, given any context. Our method only requires learning the usual single sense representation, and coefficients that can be learnt via a single pass over the data. We propose several new test sets for evaluating word sense induction, relevance detection, and contextual word similarity, significantly supplementing the currently available tests. Results on these and other tests show that while our method is embarrassingly simple, it achieves excellent results when compared to the state of the art models for unsupervised polysemous word representation learning.