Do you want to publish a course? Click here

A Reliable Uplink Control Channel Design with Complementary Sequences

74   0   0.0 ( 0 )
 Added by Alphan Sahin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this study, we propose two schemes for uplink control channels based on non-contiguous complementary sequences (CSs) where the peak-to-average-power ratio (PAPR) of the resulting orthogonal frequency division multiplexing (OFDM) signal is always less than or equal to 3 dB. To obtain the proposed schemes, we extend Golays concatenation and interleaving methods by considering extra upsampling and shifting parameters. The proposed schemes enable a flexible non-contiguous resource allocation in frequency, e.g., an arbitrary number of null symbols between the occupied resource blocks (RBs). The first scheme separates the PAPR minimization and the inter-cell interference minimization problems. While the former is solved by spreading the sequences in a Golay complementary pair (GCP) with the sequences in another GCP, the latter is managed by designing a set of GCPs with low cross-correlation. The second scheme generates reference symbols (RSs) and data symbols on each RB as parts of an encoded CS. Therefore, it enables coherent detection at the receiver side. The numerical results show that the proposed schemes offer significantly improved PAPR and cubic metric (CM) results in case of non-contiguous resource allocation as compared to the sequences defined in 3GPP New Radio (NR) and Zadoff-Chu (ZC) sequences.



rate research

Read More

57 - Alphan Sahin , Rui Yang 2019
In this paper, two modulation schemes based on complementary sequences (CSs) are proposed for uplink control channels in unlicensed bands. These schemes address high peak-to-average-power ratio (PAPR) under non-contiguous resource allocation in the frequency domain and reduce the maximum PAPR to 3 dB. The first scheme allows the users to transmit a small amount of uplink control information (UCI) such as acknowledgment signals and does not introduce a trade-off between PAPR and co-channel interference (CCI). The second scheme, which enables up to 21 UCI bits for a single user or 11 UCI bits for three users in an interlace, is based on a new theorem introduced in this paper. This theorem leads distinct CSs compatible with a wide variety of resource allocations while capturing the inherent relationship between CSs and Reed-Muller (RM) codes, which makes CSs more useful for practical systems. The numerical results show that the proposed schemes maintain the low-PAPR benefits without increasing the error rate for non-contiguous resource allocations in the frequency domain.
This paper provides the signal-to-interference-plus-noise ratio (SINR) complimentary cumulative distribution function (CCDF) and average data rate of the normalized SNR-based scheduling in an uplink cellular network using stochastic geometry. The uplink analysis is essentially different from the downlink analysis in that the per-user transmit power control is performed and that the interferers are composed of at most one transmitting user in each cell other than the target cell. In addition, as the effect of multi-user diversity varies from cell to cell depending on the number of users involved in the scheduling, the distribution of the number of users is required to obtain the averaged performance of the scheduling. This paper derives the SINR CCDF relative to the typical scheduled user by focusing on two incompatible cases, where the scheduler selects a user from all the users in the corresponding Voronoi cell or does not select users near cell edges. In each case, the SINR CCDF is marginalized over the distribution of the number of users involved in the scheduling, which is asymptotically correct if the BS density is sufficiently large or small. Through the simulations, the accuracies of the analytical results are validated for both cases, and the scheduling gains are evaluated to confirm the multi-user diversity gain.
64 - Alphan Sahin 2021
In this study, we propose partitioned complementary sequences (CSs) where the gaps between the clusters encode information bits to achieve low peak-to-average-power ratio (PAPR) orthogonal frequency division multiplexing (OFDM) symbols. We show that the partitioning rule without losing the feature of being a CS coincides with the non-squashing partitions of a positive integer and leads to a symmetric separation of clusters. We analytically derive the number of partitioned CSs for given bandwidth and a minimum distance constraint and obtain the corresponding recursive methods for enumerating the values of separations. We show that partitioning can increase the spectral efficiency (SE) without changing the alphabet of the nonzero elements of the CS, i.e., standard CSs relying on Reed-Muller (RM) code. We also develop an encoder for partitioned CSs and a maximum-likelihood-based recursive decoder for additive white Gaussian noise (AWGN) and fading channels. Our results indicate that the partitioned CSs under a minimum distance constraint can perform similar to the standard CSs in terms of average block error rate (BLER) and provide a higher SE at the expense of a limited signal-to-noise ratio (SNR) loss.
Massive multiple-input multiple-output (MIMO) is a key technology for improving the spectral and energy efficiency in 5G-and-beyond wireless networks. For a tractable analysis, most of the previous works on Massive MIMO have been focused on the system performance with complex Gaussian channel impulse responses under rich-scattering environments. In contrast, this paper investigates the uplink ergodic spectral efficiency (SE) of each user under the double scattering channel model. We derive a closed-form expression of the uplink ergodic SE by exploiting the maximum ratio (MR) combining technique based on imperfect channel state information. We further study the asymptotic SE behaviors as a function of the number of antennas at each base station (BS) and the number of scatterers available at each radio channel. We then formulate and solve a total energy optimization problem for the uplink data transmission that aims at simultaneously satisfying the required SEs from all the users with limited data power resource. Notably, our proposed algorithms can cope with the congestion issue appearing when at least one user is served by lower SE than requested. Numerical results illustrate the effectiveness of the closed-form ergodic SE over Monte-Carlo simulations. Besides, the system can still provide the required SEs to many users even under congestion.
A typical handover problem requires sequence of complex signaling between a UE, the serving, and target base station. In many handover problems the down link based measurements are transferred from a user equipment to a serving base station and the decision on handover is made on these measurements. These measurements together with the signaling between the user equipment and the serving base station is computationally expensive and can potentially drain user equipment battery. Coupled with this, the future networks are densely deployed with multiple frequency layers, rendering current handover mechanisms sub-optimal, necessitating newer methods that can improve energy efficiency. In this study, we will investigate a ML based approach towards secondary carrier prediction for inter-frequency handover using the up-link reference signals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا