Do you want to publish a course? Click here

Machine translation considering context information using Encoder-Decoder model

97   0   0.0 ( 0 )
 Added by Satoshi Yamane
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In the task of machine translation, context information is one of the important factor. But considering the context information model dose not proposed. The paper propose a new model which can integrate context information and make translation. In this paper, we create a new model based Encoder Decoder model. When translating current sentence, the model integrates output from preceding encoder with current encoder. The model can consider context information and the result score is higher than existing model.

rate research

Read More

Much recent effort has been invested in non-autoregressive neural machine translation, which appears to be an efficient alternative to state-of-the-art autoregressive machine translation on modern GPUs. In contrast to the latter, where generation is sequential, the former allows generation to be parallelized across target token positions. Some of the latest non-autoregressive models have achieved impressive translation quality-speed tradeoffs compared to autoregressive baselines. In this work, we reexamine this tradeoff and argue that autoregressive baselines can be substantially sped up without loss in accuracy. Specifically, we study autoregressive models with encoders and decoders of varied depths. Our extensive experiments show that given a sufficiently deep encoder, a single-layer autoregressive decoder can substantially outperform strong non-autoregressive models with comparable inference speed. We show that the speed disadvantage for autoregressive baselines compared to non-autoregressive methods has been overestimated in three aspects: suboptimal layer allocation, insufficient speed measurement, and lack of knowledge distillation. Our results establish a new protocol for future research toward fast, accurate machine translation. Our code is available at https://github.com/jungokasai/deep-shallow.
Neural Machine Translation (NMT) has become a popular technology in recent years, and the encoder-decoder framework is the mainstream among all the methods. Its obvious that the quality of the semantic representations from encoding is very crucial and can significantly affect the performance of the model. However, existing unidirectional source-to-target architectures may hardly produce a language-independent representation of the text because they rely heavily on the specific relations of the given language pairs. To alleviate this problem, in this paper, we propose a novel Bi-Decoder Augmented Network (BiDAN) for the neural machine translation task. Besides the original decoder which generates the target language sequence, we add an auxiliary decoder to generate back the source language sequence at the training time. Since each decoder transforms the representations of the input text into its corresponding language, jointly training with two target ends can make the shared encoder has the potential to produce a language-independent semantic space. We conduct extensive experiments on several NMT benchmark datasets and the results demonstrate the effectiveness of our proposed approach.
The prevalent approach to neural machine translation relies on bi-directional LSTMs to encode the source sentence. In this paper we present a faster and simpler architecture based on a succession of convolutional layers. This allows to encode the entire source sentence simultaneously compared to recurrent networks for which computation is constrained by temporal dependencies. On WMT16 English-Romanian translation we achieve competitive accuracy to the state-of-the-art and we outperform several recently published results on the WMT15 English-German task. Our models obtain almost the same accuracy as a very deep LSTM setup on WMT14 English-French translation. Our convolutional encoder speeds up CPU decoding by more than two times at the same or higher accuracy as a strong bi-directional LSTM baseline.
We study the calibration of several state of the art neural machine translation(NMT) systems built on attention-based encoder-decoder models. For structured outputs like in NMT, calibration is important not just for reliable confidence with predictions, but also for proper functioning of beam-search inference. We show that most modern NMT models are surprisingly miscalibrated even when conditioned on the true previous tokens. Our investigation leads to two main reasons -- severe miscalibration of EOS (end of sequence marker) and suppression of attention uncertainty. We design recalibration methods based on these signals and demonstrate improved accuracy, better sequence-level calibration, and more intuitive results from beam-search.
90 - Bei Li , Hui Liu , Ziyang Wang 2020
In encoder-decoder neural models, multiple encoders are in general used to represent the contextual information in addition to the individual sentence. In this paper, we investigate multi-encoder approaches in documentlevel neural machine translation (NMT). Surprisingly, we find that the context encoder does not only encode the surrounding sentences but also behaves as a noise generator. This makes us rethink the real benefits of multi-encoder in context-aware translation - some of the improvements come from robust training. We compare several methods that introduce noise and/or well-tuned dropout setup into the training of these encoders. Experimental results show that noisy training plays an important role in multi-encoder-based NMT, especially when the training data is small. Also, we establish a new state-of-the-art on IWSLT Fr-En task by careful use of noise generation and dropout methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا