Do you want to publish a course? Click here

Scalable Robust Adaptive Control from the System Level Perspective

297   0   0.0 ( 0 )
 Added by Dimitar Ho
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We will present a new general framework for robust and adaptive control that allows for distributed and scalable learning and control of large systems of interconnected linear subsystems. The control method is demonstrated for a linear time-invariant system with bounded parameter uncertainties, disturbances and noise. The presented scheme continuously collects measurements to reduce the uncertainty about the system parameters and adapts dynamic robust controllers online in a stable and performance-improving way. A key enabler for our approach is choosing a time-varying dynamic controller implementation, inspired by recent work on System Level Synthesis. We leverage a new robustness result for this implementation to propose a general robust adaptive control algorithm. In particular, the algorithm allows us to impose communication and delay constraints on the controller implementation and is formulated as a sequence of robust optimization problems that can be solved in a distributed manner. The proposed control methodology performs particularly well when the interconnection between systems is sparse and the dynamics of local regions of subsystems depend only on a small number of parameters. As we will show on a five-dimensional exemplary chain-system, the algorithm can utilize system structure to efficiently learn and control the entire system while respecting communication and implementation constraints. Moreover, although current theoretical results require the assumption of small initial uncertainties to guarantee robustness, we will present simulations that show good closed-loop performance even in the case of large uncertainties, which suggests that this assumption is not critical for the presented technique and future work will focus on providing less conservative guarantees.



rate research

Read More

This article treats two problems dealing with control of linear systems in the presence of a jammer that can sporadically turn off the control signal. The first problem treats the standard reachability problem, and the second treats the standard linear quadratic regulator problem under the above class of jamming signals. We provide necessary and sufficient conditions for optimality based on a nonsmooth Pontryagin maximum principle.
Behavioral software models play a key role in many software engineering tasks; unfortunately, these models either are not available during software development or, if available, they quickly become outdated as the implementations evolve. Model inference techniques have been proposed as a viable solution to extract finite-state models from execution logs. However, existing techniques do not scale well when processing very large logs, such as system-level logs obtained by combining component-level logs. Furthermore, in the case of component-based systems, existing techniques assume to know the definitions of communication channels between components. However, this information is usually not available in the case of systems integrating 3rd-party components with limited documentation. In this paper, we address the scalability problem of inferring the model of a component-based system from the individual component-level logs, when the only available information about the system are high-level architecture dependencies among components and a (possibly incomplete) list of log message templates denoting communication events between components. Our model inference technique, called SCALER, follows a divide and conquer approach. The idea is to first infer a model of each system component from the corresponding logs; then, the individual component models are merged together taking into account the dependencies among components, as reflected in the logs. We evaluated SCALER in terms of scalability and accuracy, using a dataset of logs from an industrial system; the results show that SCALER can process much larger logs than a state-of-the-art tool, while yielding more accurate models.
This work studies the design of safe control policies for large-scale non-linear systems operating in uncertain environments. In such a case, the robust control framework is a principled approach to safety that aims to maximize the worst-case performance of a system. However, the resulting optimization problem is generally intractable for non-linear systems with continuous states. To overcome this issue, we introduce two tractable methods that are based either on sampling or on a conservative approximation of the robust objective. The proposed approaches are applied to the problem of autonomous driving.
475 - Yingying Liu , Kai Cai , 2017
In this paper we study multi-agent discrete-event systems where the agents can be divided into several groups, and within each group the agents have similar or identical state transition structures. We employ a relabeling map to generate a template structure for each group, and synthesize a scalable supervisor whose state size and computational process are independent of the number of agents. This scalability allows the supervisor to remain invariant (no recomputation or reconfiguration needed) if and when there are agents removed due to failure or added for increasing productivity. The constant computational effort for synthesizing the scalable supervisor also makes our method promising for handling large-scale multi-agent systems. Moreover, based on the scalable supervisor we design scalable local controllers, one for each component agent, to establish a purely distributed control architecture. Three examples are provided to illustrate our proposed scalable supervisory synthesis and the resulting scalable supervisors as well as local controllers.
The paper evaluates the influence of the maximum vehicle acceleration and variable proportions of ACC/CACC vehicles on the throughput of an intersection. Two cases are studied: (1) free road downstream of the intersection; and (2) red light at some distance downstream of the intersection. Simulation of a 4-mile stretch of an arterial with 13 signalized intersections is used to evaluate the impact of (C)ACC vehicles on the mean and standard deviation of travel time as the proportion of (C)ACC vehicles is increased. The results suggest a very high urban mobility benefit of (C)ACC vehicles at little or no cost in infrastructure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا