Do you want to publish a course? Click here

Approximate Robust Control of Uncertain Dynamical Systems

185   0   0.0 ( 0 )
 Added by Edouard Leurent
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This work studies the design of safe control policies for large-scale non-linear systems operating in uncertain environments. In such a case, the robust control framework is a principled approach to safety that aims to maximize the worst-case performance of a system. However, the resulting optimization problem is generally intractable for non-linear systems with continuous states. To overcome this issue, we introduce two tractable methods that are based either on sampling or on a conservative approximation of the robust objective. The proposed approaches are applied to the problem of autonomous driving.



rate research

Read More

164 - Hanlei Wang 2014
In this paper, we investigate the adaptive control problem for robot manipulators with both the uncertain kinematics and dynamics. We propose two adaptive control schemes to realize the objective of task-space trajectory tracking irrespective of the uncertain kinematics and dynamics. The proposed controllers have the desirable separation property, and we also show that the first adaptive controller with appropriate modifications can yield improved performance, without the expense of conservative gain choice. The performance of the proposed controllers is shown by numerical simulations.
A novel adaptive control approach is proposed to solve the globally asymptotic state stabilization problem for uncertain pure-feedback nonlinear systems which can be transformed into the pseudo-affine form. The pseudo-affine pure-feedback nonlinear system under consideration is with non-linearly parameterised uncertainties and possibly unknown control coefficients. Based on the parameter separation technique, a backstepping controller is designed by adopting the adaptive high gain idea. The rigorous stability analysis shows that the proposed controller could guarantee, for any initial system condition, boundedness of the closed-loop signals and globally asymptotic stabilization of the state. A numerical and a realistic examples are employed to demonstrate the effectiveness of the proposed control method.
A new approach for robust Hinfty filtering for a class of Lipschitz nonlinear systems with time-varying uncertainties both in the linear and nonlinear parts of the system is proposed in an LMI framework. The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting Hinfty filter guarantees asymptotic stability of the estimation error dynamics with exponential convergence and is robust against nonlinear additive uncertainty and time-varying parametric uncertainties. Explicit bounds on the nonlinear uncertainty are derived based on norm-wise and element-wise robustness analysis.
We present a sample-based Learning Model Predictive Controller (LMPC) for constrained uncertain linear systems subject to bounded additive disturbances. The proposed controller builds on earlier work on LMPC for deterministic systems. First, we introduce the design of the safe set and value function used to guarantee safety and performance improvement. Afterwards, we show how these quantities can be approximated using noisy historical data. The effectiveness of the proposed approach is demonstrated on a numerical example. We show that the proposed LMPC is able to safely explore the state space and to iteratively improve the worst-case closed-loop performance, while robustly satisfying state and input constraints.
190 - Hanlei Wang 2015
This paper investigates the visual servoing problem for robotic systems with uncertain kinematic, dynamic, and camera parameters. We first present the passivity properties associated with the overall kinematics of the system, and then propose two passivity-based adaptive control schemes to resolve the visual tracking problem. One scheme employs the adaptive inverse-Jacobian-like feedback, and the other employs the adaptive transpose Jacobian feedback. With the Lyapunov analysis approach, it is shown that under either of the proposed control schemes, the image-space tracking errors converge to zero without relying on the assumption of the invertibility of the estimated depth. Numerical simulations are performed to show the tracking performance of the proposed adaptive controllers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا