Do you want to publish a course? Click here

A diameter gap for quotients of the unit sphere

264   0   0.0 ( 0 )
 Added by Christian Lange
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We prove that for any isometric action of a group on a unit sphere of dimension larger than one, the quotient space has diameter zero or larger than a universal dimension-independent positive constant.



rate research

Read More

We prove a sharp $L^2to H^{1/2}$ stability estimate for the geodesic X-ray transform of tensor fields of order $0$, $1$ and $2$ on a simple Riemannian manifold with a suitable chosen $H^{1/2}$ norm. We show that such an estimate holds for a family of such $H^{1/2}$ norms, not topologically equivalent, but equivalent on the range of the transform. The reason for this is that the geodesic X-ray transform has a microlocally structured range.
We prove that on an arbitrary metric measure space a countable collection of test plans is sufficient to recover all $rm BV$ functions and their total variation measures. In the setting of non-branching ${sf CD}(K,N)$ spaces (with finite reference measure), we can additionally require these test plans to be concentrated on geodesics.
Given a compact connected set $E$ in the unit disk $mathbb{B}^2$, we give a new upper bound for the conformal capacity of the condenser $(mathbb{B}^2, E),$ in terms of the hyperbolic diameter $t$ of $E$. Moreover, for $t>0$ we construct a set of diameter $t$ and show by numerical computation that it has larger capacity than a hyperbolic disk with the same diameter. The set we construct is of constant hyperbolic width equal to $t$, the so called hyperbolic Reuleaux triangle.
In this paper we apply techniques from optimal transport to study the neckpinch examples of Angenent-Knopf which arise through the Ricci flow on $mathbb{S}^{n+1}$. In particular, we recover their proof of single-point pinching along the flow. Using the methods of optimal transportation, we are able to remove the assumption of reflection symmetry for the metric. Our argument relies on the heuristic for weak Ricci flow proposed by McCann-Topping which characterizes super solutions of the Ricci flow by the contractivity of diffusions.
A classic theorem of Kazhdan and Margulis states that for any semisimple Lie group without compact factors, there is a positive lower bound on the covolume of lattices. H. C. Wangs subsequent quantitative analysis showed that the fundamental domain of any lattice contains a ball whose radius depends only on the group itself. A direct consequence is a positive minimum volume for orbifolds modeled on the corresponding symmetric space. However, sharp bounds are known only for hyperbolic orbifolds of dimensions two and three, and recently for quaternionic hyperbolic orbifolds of all dimensions. As in arXiv:0911.4712 and arXiv:1205.2011, this article combines H. C. Wangs radius estimate with an improved upper sectional curvature bound for a canonical left-invariant metric on a real semisimple Lie group and uses Gunthers volume comparison theorem to deduce an explicit uniform lower volume bound for arbitrary orbifold quotients of a given irreducible symmetric spaces of non-compact type. The numerical bound for the octonionic hyperbolic plane is the first such bound to be given. For (real) hyperbolic orbifolds of dimension greater than three, the bounds are an improvement over what was previously known.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا