Do you want to publish a course? Click here

Optimal power and efficiency of single quantum dot heat engines: theory and experiment

128   0   0.0 ( 0 )
 Added by Martin Josefsson
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum dots (QDs) can serve as near perfect energy filters and are therefore of significant interest for the study of thermoelectric energy conversion close to thermodynamic efficiency limits. Indeed, recent experiments in [Nat. Nano. 13, 920 (2018)] realized a QD heat engine with performance near these limits and in excellent agreement with theoretical predictions. However, these experiments also highlighted a need for more theory to help guide and understand the practical optimization of QD heat engines, in particular regarding the role of tunnel couplings on the performance at maximum power and efficiency for QDs that couple seemingly weakly to electronic reservoirs. Furthermore, these experiments also highlighted the critical role of the external load when optimizing the performance of a QD heat engine in practice. To provide further insight into the operation of these engines we use the Anderson impurity model together with a Master equation approach to perform power and efficiency calculations up to co-tunneling order. This is combined with additional thermoelectric experiments on a QD embedded in a nanowire where the power is measured using two methods. We use the measurements to present an experimental procedure for efficiently finding the external load $R_P$ which should be connected to the engine to optimize power output. Our theoretical estimates of $R_P$ show a good agreement with the experimental results, and we show that second order tunneling processes and non-linear effects have little impact close to maximum power, allowing us to derive a simple analytic expression for $R_P$. In contrast, we find that the electron contribution to the thermoelectric efficiency is significantly reduced by second order tunneling processes, even for rather weak tunnel couplings.



rate research

Read More

This paper examines the thermoelectric response of a dissipative quantum dot heat engine based on the Anderson-Holstein model in two relevant operating limits: (i) when the dot phonon modes are out of equilibrium, and (ii) when the dot phonon modes are strongly coupled to a heat bath. In the first case, a detailed analysis of the physics related to the interplay between the quantum dot level quantization, the on-site Coulomb interaction and the electron-phonon coupling on the thermoelectric performance reveals that an n-type heat engine performs better than a p-type heat engine. In the second case, with the aid of the dot temperature estimated by incorporating a {it{thermometer bath}}, it is shown that the dot temperature deviates from the bath temperature as electron-phonon interaction becomes stronger. Consequently, it is demonstrated that the dot temperature controls the direction of phonon heat currents, thereby influencing the thermoelectric performance. Finally, the conditions on the maximum efficiency with varying phonon couplings between the dot and all the other macroscopic bodies are analyzed in order to reveal the nature of the optimum junction.
Efficiency at maximum power (EMP) is a very important specification for a heat engine to evaluate the capacity of outputting adequate power with high efficiency. It has been proved theoretically that the limit EMP of thermoelectric heat engine can be achieved with the hypothetical boxcar-shaped electron transmission, which is realized here by the resonant tunneling in the one-dimensional symmetric InP/InSe superlattice. It is found with the transfer matrix method that a symmetric mode is robust that regardless of the periodicity, and the obtained boxcar-like electron transmission stems from the strong coupling between symmetric mode and Fabry-Perot modes inside the allowed band. High uniformity of the boxcar-like transmission and the sharp drop of the transmission edge are both beneficial to the maximum power and the EMP, which are optimized by the bias voltage and the thicknesses of barrier and well. The maximum power and EMP are extracted with the help of machine learning technique, and more than 95% of their theoretical limits can both be achieved for smaller temperature difference, smaller barrier width and larger well width. We hope the obtain results could provide some basic guidance for the future designs of high EMP thermoelectric heat engines.
87 - Yu-Han Ma , Dazhi Xu , Hui Dong 2018
The efficiency at maximum power has been investigated extensively, yet the practical control scheme to achieve it remains elusive. We fill such gap with a stepwise Carnot-like cycle, which consists the discrete isothermal process (DIP) and adiabatic process. With DIP, we validate the widely adopted assumption of mathscr{C}/t relation of the irreversible entropy generation S^{(mathrm{ir})}, and show the explicit dependence of the coefficient mathscr{C} on the fluctuation of the speed of tuning energy levels as well as the microscopic coupling constants to the heat baths. Such dependence allows to control the irreversible entropy generation by choosing specific control schemes. We further demonstrate the achievable efficiency at maximum power and the corresponding control scheme with the simple two-level system. Our current work opens new avenues for the experimental test, which was not feasible due to the lack the of the practical control scheme in the previous low-dissipation model or its equivalents.
137 - L. Arrachea , M. Moskalets 2009
A quantum dot driven by two ac gate potentials oscillating with a phase lag may be regarded as a quantum engine, where energy is transported and dissipated in the form of heat. In this chapter we introduce a microscopic model for a quantum pump and analyze the fundamental principle for the conservation of the charge and energy in this device. We also present the basics of two well established many-body techniques to treat quantum transport in harmonically time-dependent systems. We discuss the different operating modes of this quantum engine, including the mechanism of heat generation. Finally, we establish the principles of quantum refrigeration within the weak driving regime. We also show that it is possible to achieve a regime where part of the work done by some of the ac fields can be coherently transported and can be used by the other driving voltages.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا