No Arabic abstract
HD 163296 is one of the few protoplanetary discs displaying rings in the dust component. The present work uses ALMA observations of the 0.9 mm continuum emission having significantly better spatial resolution (~8 au) than previously available, providing new insight on the morphology of the dust disc and its double ring structure. The disc is shown to be thin and its position angle and inclination with respect to the sky plane are accurately measured as are the locations and shapes that characterize the observed ring/gap structure. Significant modulation of the intensity of the outer ring emission have been revealed and discussed. In addition, earlier ALMA observations of the emission of three molecular lines, CO(2-1), C18O(2-1), and DCO+(3-2), having a resolution of ~70 au, are used to demonstrate the Keplerian motion of the gas, found consistent with a central mass of 2.3 solar masses. An upper limit of ~9% of the rotation velocity is placed on the in-fall velocity. The beam size is shown to give the dominant contribution to the line widths, accounting for both their absolute values and their dependence on the distance to the central star.
We present detailed model fits to observations of the disc around the Herbig Ae star HD 163296. This well-studied object has an age of ~ 4 Myr, with evidence of a circumstellar disc extending out to ~ 540AU. We use the radiation thermo-chemical disc code ProDiMo to model the gas and dust in the circumstellar disc of HD 163296, and attempt to determine the disc properties by fitting to observational line and continuum data. These include new Herschel/PACS observations obtained as part of the open-time key program GASPS (Gas in Protoplanetary Systems), consisting of a detection of the [OI]63mic line and upper limits for several other far infrared lines. We complement this with continuum data and ground-based observations of the 12CO 3-2, 2-1 and 13CO J=1-0 line transitions, as well as the H2 S(1) transition. We explore the effects of stellar ultraviolet variability and dust settling on the line emission, and on the derived disc properties. Our fitting efforts lead to derived gas/dust ratios in the range 9-100, depending on the assumptions made. We note that the line fluxes are sensitive in general to the degree of dust settling in the disc, with an increase in line flux for settled models. This is most pronounced in lines which are formed in the warm gas in the inner disc, but the low excitation molecular lines are also affected. This has serious implications for attempts to derive the disc gas mass from line observations. We derive fractional PAH abundances between 0.007 and 0.04 relative to ISM levels. Using a stellar and UV excess input spectrum based on a detailed analysis of observations, we find that the all observations are consistent with the previously assumed disc geometry.
The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimeter dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of $approx$50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.
We aim at estimating the dust scale height of protoplanetary disks from millimeter continuum observations. First, we present a general expression of intensity of a ring in a protoplanetary disk, and show that we can constrain the dust scale height by the azimuthal intensity variation. Then, we apply the presented methodology to the two distinct rings at 68 au and at 100 au of the protoplanetary disk around HD 163296. We constrain the dust scale height by comparing the DSHARP high-resolution millimeter dust continuum image with radiative transfer simulations using RADMC-3D. We find that h_d/h_g > 0.84 at the inner ring and h_d/h_g < 0.11 at the outer ring with the 3 sigma uncertainties, where h_d is the dust scale height and h_g is the gas scale height. This indicates that the dust is flared at the inner ring and settled at the outer ring. We further constrain the ratio of turbulence parameter alpha to gas-to-dust-coupling parameter St from the derived dust scale height; alpha/St > 2.4 at the inner ring, and alpha/St < 1.1*10^{-2} at the outer ring. This result shows that the turbulence is stronger or the dust is smaller at the inner ring than at the outer ring.
We present a high angular resolution ($sim 0.2^{primeprime}$), high sensitivity ($sigma sim 0.2$ mJy) survey of the 870 $mu$m continuum emission from the circumstellar material around 49 pre-main sequence stars in the $rho$ Ophiuchus molecular cloud. Because most millimeter instruments have resided in the northern hemisphere, this represents the largest high-resolution, millimeter-wave survey of the circumstellar disk content of this cloud. Our survey of 49 systems comprises 63 stars; we detect disks associated with 29 single sources, 11 binaries, 3 triple systems and 4 transition disks. We present flux and radius distributions for these systems; in particular, this is the first presentation of a reasonably complete probability distribution of disk radii at millimeter-wavelengths. We also compare the flux distribution of these protoplanetary disks with that of the disk population of the Taurus-Auriga molecular cloud. We find that disks in binaries are both significantly smaller and have much less flux than their counterparts around isolated stars. We compute truncation calculations on our binary sources and find that these disks are too small to have been affected by tidal truncation and posit some explanations for this. Lastly, our survey found 3 candidate gapped disks, one of which is a newly identified transition disk with no signature of a dip in infrared excess in extant observations.
The high spatial and line sensitivity of ALMA opens the possibility of resolving emission from molecules in circumstellar disks. With an understanding of physical conditions under which molecules have high abundance, they can be used as direct tracers of distinct physical regions. In particular, DCO+ is expected to have an enhanced abundance within a few Kelvin of the CO freezeout temperature of 19 K, making it a useful probe of the cold disk midplane. We compare ALMA line observations of HD 163296 to a grid of models. We vary the upper- and lower-limit temperatures of the region in which DCO+ is present as well as the abundance of DCO+ in order to fit channel maps of the DCO+ J=5-4 line. To determine the abundance enhancement compared to the general interstellar medium, we carry out similar fitting to HCO+ J=4-3 and H13CO+ J=4-3 observations. ALMA images show centrally peaked extended emission from HCO+ and H13CO+. DCO+ emission lies in a resolved ring from ~110 to 160 AU. The outer radius approximately corresponds to the size of the CO snowline as measured by previous lower resolution observations of CO lines in this disk. The ALMA DCO+ data now resolve and image the CO snowline directly. In the best fitting models, HCO+ exists in a region extending from the 19 K isotherm to the photodissociation layer with an abundance of 3x10^-10 relative to H2. DCO+ exists within the 19-21 K region of the disk with an abundance ratio [DCO+] / [HCO+] = 0.3. This represents a factor of 10^4 enhancement of the DCO+ abundance within this narrow region of the HD 163296 disk. Such a high enhancement has only previously been seen in prestellar cores. The inferred abundances provide a lower limit to the ionization fraction in the midplane of the cold outer disk (approximately greater than 4x10^-10), and suggest the utility of DCO+ as a tracer of its parent molecule H2D+. Abridged