Do you want to publish a course? Click here

Inertial Sensor Aided mmWave Beam Tracking to Support Cooperative Autonomous Driving

65   0   0.0 ( 0 )
 Added by Mattia Brambilla
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper presents an inertial sensor aided technique for beam alignment and tracking in massive multiple-input multiple-output (MIMO) vehicle-to-vehicle (V2V) communications based on millimeter waves (mmWave). Since directional communications in vehicular scenarios are severely hindered by beam pointing issues, a beam alignment procedure has to be periodically carried out to guarantee the communication reliability. When dealing with massive MIMO links, the beam sweeping approach is known to be time consuming and often unfeasible due to latency constraints. To speed up the process, we propose a method that exploits a-priori information on array dynamics provided by an inertial sensor on transceivers to assist the beam alignment procedure. The proposed inertial sensor aided technique allows a continuous tracking of the beam while transmitting, avoiding frequent realignment phases. Numerical results based on real measurements of on-transceiver accelerometers demonstrate a significant gain in terms of V2V communication throughput with respect to conventional beam alignment protocols.



rate research

Read More

A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links connecting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.
Location information offered by external positioning systems, e.g., satellite navigation, can be used as prior information in the process of beam alignment and channel parameter estimation for reconfigurable intelligent surface (RIS)-aided millimeter wave (mmWave) multiple-input multiple-output networks. Benefiting from the availability of such prior information, albeit imperfect, the beam alignment and channel parameter estimation processes can be significantly accelerated with less candidate beams explored at all the terminals. We propose a practical channel parameter estimation method via atomic norm minimization, which outperforms the standard beam alignment in terms of both the mean square error and the effective spectrum efficiency for the same training overhead.
A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snells reflection law. However, the optimal control of the RIS requires perfect channel state information (CSI) of the individual channels that link the base station (BS) and the mobile station (MS) to each other via the RIS. Thereby super-resolution channel (parameter) estimation needs to be efficiently conducted at the BS or MS with CSI feedback to the RIS controller. In this paper, we adopt a two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and products of propagation path gains. We evaluate the mean square error of the parameter estimates, the RIS gains, the average effective spectrum efficiency bound, and average squared distance between the designed beamforming and combining vectors and the optimal ones. The results demonstrate that the proposed scheme achieves super-resolution estimation compared to the existing benchmark schemes, thus offering promising performance in the subsequent data transmission phase.
142 - Chunshan Liu , Min Li , Lou Zhao 2020
Millimetre wave (mmWave) beam tracking is a challenging task because tracking algorithms are required to provide consistent high accuracy with low probability of loss of track and minimal overhead. To meet these requirements, we propose in this paper a new analog beam tracking framework namely Adaptive Tracking with Stochastic Control (ATSC). Under this framework, beam direction updates are made using a novel mechanism based on measurements taken from only two beam directions perturbed from the current data beam. To achieve high tracking accuracy and reliability, we provide a systematic approach to jointly optimise the algorithm parameters. The complete framework includes a method for adapting the tracking rate together with a criterion for realignment (perceived loss of track). ATSC adapts the amount of tracking overhead that matches well to the mobility level, without incurring frequent loss of track, as verified by an extensive set of experiments under both representative statistical channel models as well as realistic urban scenarios simulated by ray-tracing software. In particular, numerical results show that ATSC can track dominant channel directions with high accuracy for vehicles moving at 72 km/hour in complicated urban scenarios, with an overhead of less than 1%.
Terahertz spectrum is being researched upon to provide ultra-high throughput radio links for indoor applications, e.g., virtual reality (VR), etc. as well as outdoor applications, e.g., backhaul links, etc. This paper investigates a monopulse-based beam tracking approach for limited mobility users relying on sparse massive multiple input multiple output (MIMO) wireless channels. Owing to the sparsity, beamforming is realized using digitally-controlled radio frequency (RF) / intermediate-frequency (IF) phase shifters with constant amplitude constraint for transmit power compliance. A monopulse-based beam tracking technique, using received signal strength indi-cation (RSSI) is adopted to avoid feedback overheads for obvious reasons of efficacy and resource savings. The Matlab implementation of the beam tracking algorithm is also reported. This Matlab implementation has been kept as general purpose as possible using functions wherein the channel, beamforming codebooks, monopulse comparator, etc. can easily be updated for specific requirements and with minimum code amendments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا