Do you want to publish a course? Click here

Zero-shot Image Recognition Using Relational Matching, Adaptation and Calibration

78   0   0.0 ( 0 )
 Added by Debasmit Das
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Zero-shot learning (ZSL) for image classification focuses on recognizing novel categories that have no labeled data available for training. The learning is generally carried out with the help of mid-level semantic descriptors associated with each class. This semantic-descriptor space is generally shared by both seen and unseen categories. However, ZSL suffers from hubness, domain discrepancy and biased-ness towards seen classes. To tackle these problems, we propose a three-step approach to zero-shot learning. Firstly, a mapping is learned from the semantic-descriptor space to the image-feature space. This mapping learns to minimize both one-to-one and pairwise distances between semantic embeddings and the image features of the corresponding classes. Secondly, we propose test-time domain adaptation to adapt the semantic embedding of the unseen classes to the test data. This is achieved by finding correspondences between the semantic descriptors and the image features. Thirdly, we propose scaled calibration on the classification scores of the seen classes. This is necessary because the ZSL model is biased towards seen classes as the unseen classes are not used in the training. Finally, to validate the proposed three-step approach, we performed experiments on four benchmark datasets where the proposed method outperformed previous results. We also studied and analyzed the performance of each component of our proposed ZSL framework.



rate research

Read More

We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If ``yes, the sample is from a certain class, and ``no otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at https://github.com/yue-zhongqi/gcm-cf.
Chinese character recognition has attracted much research interest due to its wide applications. Although it has been studied for many years, some issues in this field have not been completely resolved yet, e.g. the zero-shot problem. Previous character-based and radical-based methods have not fundamentally addressed the zero-shot problem since some characters or radicals in test sets may not appear in training sets under a data-hungry condition. Inspired by the fact that humans can generalize to know how to write characters unseen before if they have learned stroke orders of some characters, we propose a stroke-based method by decomposing each character into a sequence of strokes, which are the most basic units of Chinese characters. However, we observe that there is a one-to-many relationship between stroke sequences and Chinese characters. To tackle this challenge, we employ a matching-based strategy to transform the predicted stroke sequence to a specific character. We evaluate the proposed method on handwritten characters, printed artistic characters, and scene characters. The experimental results validate that the proposed method outperforms existing methods on both character zero-shot and radical zero-shot tasks. Moreover, the proposed method can be easily generalized to other languages whose characters can be decomposed into strokes.
Zero-shot learning (ZSL) is a framework to classify images belonging to unseen classes based on solely semantic information about these unseen classes. In this paper, we propose a new ZSL algorithm using coupled dictionary learning. The core idea is that the visual features and the semantic attributes of an image can share the same sparse representation in an intermediate space. We use images from seen classes and semantic attributes from seen and unseen classes to learn two dictionaries that can represent sparsely the visual and semantic feature vectors of an image. In the ZSL testing stage and in the absence of labeled data, images from unseen classes can be mapped into the attribute space by finding the joint sparse representation using solely the visual data. The image is then classified in the attribute space given semantic descriptions of unseen classes. We also provide an attribute-aware formulation to tackle domain shift and hubness problems in ZSL. Extensive experiments are provided to demonstrate the superior performance of our approach against the state of the art ZSL algorithms on benchmark ZSL datasets.
Understanding crowd behavior in video is challenging for computer vision. There have been increasing attempts on modeling crowded scenes by introducing ever larger property ontologies (attributes) and annotating ever larger training datasets. However, in contrast to still images, manually annotating video attributes needs to consider spatiotemporal evolution which is inherently much harder and more costly. Critically, the most interesting crowd behaviors captured in surveillance videos (e.g., street fighting, flash mobs) are either rare, thus have few examples for model training, or unseen previously. Existing crowd analysis techniques are not readily scalable to recognize novel (unseen) crowd behaviors. To address this problem, we investigate and develop methods for recognizing visual crowd behavioral attributes without any training samples, i.e., zero-shot learning crowd behavior recognition. To that end, we relax the common assumption that each individual crowd video instance is only associated with a single crowd attribute. Instead, our model learns to jointly recognize multiple crowd behavioral attributes in each video instance by exploring multiattribute cooccurrence as contextual knowledge for optimizing individual crowd attribute recognition. Joint multilabel attribute prediction in zero-shot learning is inherently nontrivial because cooccurrence statistics does not exist for unseen attributes. To solve this problem, we learn to predict cross-attribute cooccurrence from both online text corpus and multilabel annotation of videos with known attributes. Our experiments show that this approach to modeling multiattribute context not only improves zero-shot crowd behavior recognition on the WWW crowd video dataset, but also generalizes to novel behavior (violence) detection cross-domain in the Violence Flow video dataset.
Domain adaptation (DA) addresses the real-world image classification problem of discrepancy between training (source) and testing (target) data distributions. We propose an unsupervised DA method that considers the presence of only unlabelled data in the target domain. Our approach centers on finding matches between samples of the source and target domains. The matches are obtained by treating the source and target domains as hyper-graphs and carrying out a class-regularized hyper-graph matching using first-, second- and third-order similarities between the graphs. We have also developed a computationally efficient algorithm by initially selecting a subset of the samples to construct a graph and then developing a customized optimization routine for graph-matching based on Conditional Gradient and Alternating Direction Multiplier Method. This allows the proposed method to be used widely. We also performed a set of experiments on standard object recognition datasets to validate the effectiveness of our framework over state-of-the-art approaches.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا