No Arabic abstract
During the last decade, numerous and varied observations, along with increasingly sophisticated numerical simulations, have awakened astronomers to the central role the circumgalactic medium (CGM) plays in regulating galaxy evolution. It contains the majority of the baryonic matter associated with a galaxy, along with most of the metals, and must continually replenish the star forming gas in galaxies that continue to sustain star formation. And while the CGM is complex, containing gas ranging over orders of magnitude in temperature and density, a simple emergent property may be governing its structure and role. Observations increasingly suggest that the ambient CGM pressure cannot exceed the limit at which cold clouds start to condense out and precipitate toward the center of the potential well. If feedback fueled by those clouds then heats the CGM and causes it to expand, the pressure will drop and the rain will diminish. Such a feedback loop tends to suspend the CGM at the threshold pressure for precipitation. The coming decade will offer many opportunities to test this potentially fundamental principle of galaxy evolution.
Cosmic gas cycles in and out of galaxies, but outside of galaxies it is difficult to observe except for the absorption lines that circumgalactic clouds leave in the spectra of background quasars. Using photoionization modeling of those lines to determine cloud pressures, we find that galaxies are surrounded by extended atmospheres that confine the clouds and have a radial pressure profile that depends on galaxy mass. Motivated by observations of the universes most massive galaxies, we compare those pressure measurements with models predicting the critical pressure at which cooler clouds start to precipitate out of the hot atmosphere and rain toward the center. We find excellent agreement, implying that the precipitation limit applies to galaxies over a wide mass range.
This paper presents a study of the galactic environment of a chemically-pristine (<0.6% solar metallicity) Lyman Limit system (LLS) discovered along the sightline toward QSO SDSSJ135726.27+043541.4 (zQSO=1.233) at projected distance d=126 physical kpc (pkpc) from a luminous red galaxy (LRG) at z=0.33. Combining deep Hubble Space Telescope images, MUSE integral field spectroscopic data, and wide-field redshift survey data has enabled an unprecedented, ultra-deep view of the environment around this LRG-LLS pair. A total of 12 galaxies, including the LRG, are found at d<~400 pkpc and line-of-sight velocity dv<600 km/s of the LLS, with intrinsic luminosity ranging from 0.001L* to 2L* and a corresponding stellar mass range of Mstar=10^{7-11} Msun. All 12 galaxies contribute to a total mass of Mstar=1.6e11 Msun with ~80% contained in the LRG. The line-of-sight velocity dispersion of these galaxies is found to be {sigma}_group=230 km/s with the center of mass at d_group=118 pkpc and line-of-sight velocity offset of {Delta}v_group=181 km/s from the LLS. Three of these are located at d<~100 pkpc from the LLS, and they are all faint with intrinsic luminosity <0.02 L* and gas phase metallicity of ~10% solar in their interstellar medium. The disparity in the chemical enrichment level between the LLS and the group members suggests that the LLS originates in infalling intergalactic medium and that parts of the intergalactic gas near old and massive galaxies can still remain chemically pristine through the not too distant past.
We consider the effects of radio-wave scattering by cool ionized clumps ($Tsim 10^4,$K) in circumgalactic media (CGM). The existence of such clumps are inferred from intervening quasar absorption systems, but have long been something of a theoretical mystery. We consider the implications for compact radio sources of the `fog-like two-phase model of the circumgalactic medium recently proposed by McCourt et al.(2018). In this model, the CGM consists of a diffuse coronal gas ($Tgtrsim 10^6,$K) in pressure equilibrium with numerous $lesssim 1,$pc scale cool clumps or `cloudlets formed by shattering in a cooling instability. The areal filling factor of the cloudlets is expected to exceed unity in $gtrsim 10^{11.5} M_odot$ haloes, and the ensuing radio-wave scattering is akin to that caused by turbulence in the Galactic warm ionized medium (WIM). If $30,$per-cent of cosmic baryons are in the CGM, we show that for a cool-gas volume fraction of $f_{rm v}sim 10^{-3}$, sources at $z_{rm s}sim 1$ suffer angular broadening by $sim 15,mu$as and temporal broadening by $sim 1,$ms at $lambda = 30,$cm, due to scattering by the clumps in intervening CGM. The former prediction will be difficult to test (the angular broadening will suppress Galactic scintillation only for $<10,mu$Jy compact synchrotron sources). However the latter prediction, of temporal broadening of localized fast radio bursts, can constrain the size and mass fraction of cool ionized gas clumps as function of halo mass and redshift, and thus provides a test of the model proposed by McCourt et al.(2018).
We use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to explore the properties and origin of cold circumgalactic medium (CGM) gas around massive galaxies (M* > 10^11 Msun) at intermediate redshift (z~0.5). We discover a significant abundance of small-scale, cold gas structure in the CGM of red and dead elliptical systems, as traced by neutral HI and MgII. Halos can host tens of thousands of discrete absorbing cloudlets, with sizes of order a kpc or smaller. With a Lagrangian tracer analysis, we show that cold clouds form due to strong drho/rho >> 1 gas density perturbations which stimulate thermal instability. These local overdensities trigger rapid cooling from the hot virialized background medium at ~10^7 K to radiatively inefficient ~10^4 K clouds, which act as cosmologically long-lived, stimulated cooling seeds in a regime where the global halo does not satisfy the classic tcool/tff < 10 criterion. Furthermore, these small clouds are dominated by magnetic rather than thermal pressure, with plasma beta << 1, suggesting that magnetic fields may play an important role. The number and total mass of cold clouds both increase with resolution, and the ~8x10^4 Msun cell mass of TNG50 enables the ~few hundred pc, small-scale CGM structure we observe to form. Finally, we make a preliminary comparison against observations from the COS-LRG, LRG-RDR, COS-Halos, and SDSS LRG surveys. We broadly find that our recent, high-resolution cosmological simulations produce sufficiently high covering fractions of extended, cold gas as observed to surround massive galaxies.
We analyse the properties of circumgalactic gas around simulated galaxies in the redshift range z >= 3, utilising a new sample of cosmological zoom simulations. These simulations are intended to be representative of the observed samples of Lyman-alpha emitters recently obtained with the MUSE instrument (halo masses ~10^10-10^11 solar masses). We show that supernova feedback has a significant impact on both the inflowing and outflowing circumgalactic medium by driving outflows, reducing diffuse inflow rates, and by increasing the neutral fraction of inflowing gas. By temporally stacking simulation outputs we find that significant net mass exchange occurs between inflowing and outflowing phases: none of the phases are mass-conserving. In particular, we find that the mass in neutral outflowing hydrogen declines exponentially with radius as gas flows outwards from the halo centre. This is likely caused by a combination of both fountain-like cycling processes and gradual photo/collisional ionization of outflowing gas. Our simulations do not predict the presence of fast-moving neutral outflows in the CGM. Neutral outflows instead move with modest radial velocities (~ 50 kms^-1), and the majority of the kinetic energy is associated with tangential rather than radial motion.