Do you want to publish a course? Click here

Nearly order from quantum disorder phenomena and its observation in a bosonic quantum anomalous Hall system

56   0   0.0 ( 0 )
 Added by Fadi Sun
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a new many body phenomena called Nearly order from quantum disorder phenomena (NOFQD). We demonstrate the NOFQD in the experimentally realized weakly interacting Quantum Anomalous Hall system of spinor bosons in an optical lattice. We establish intrinsic connections between the phenomenological GL theory and the microscopic calculations on the effective potential. Connections with the bilayer quantum Hall system with a total filling factor $ u_T=1 $ are made. Some insightful analogy with $ NAdS_2/NCFT_1 $ ( where $ N $ also means nearly ) correspondence in the context of Sachdev-Ye-Kitaev models are hinted. Two types of OFQDs are classified, one response trivially, another non-trivially to a small deformation to the Hamiltonian leading to NOFQD. The NOFQD can be detected in the current cold atom bosonic quantum anomalous Hall experiments and may also appear in many other frustrated systems.



rate research

Read More

The dominance of interactions over kinetic energy lies at the heart of strongly correlated quantum matter, from fractional quantum Hall liquids, to atoms in optical lattices and twisted bilayer graphene. Crystalline phases often compete with correlated quantum liquids, and transitions between them occur when the energy cost of forming a density wave approaches zero. A prime example occurs for electrons in high magnetic fields, where the instability of quantum Hall liquids towards a Wigner crystal is heralded by a roton-like softening of density modulations at the magnetic length. Remarkably, interacting bosons in a gauge field are also expected to form analogous liquid and crystalline states. However, combining interactions with strong synthetic magnetic fields has been a challenge for experiments on bosonic quantum gases. Here, we study the purely interaction-driven dynamics of a Landau gauge Bose-Einstein condensate in and near the lowest Landau level (LLL). We observe a spontaneous crystallization driven by condensation of magneto-rotons, excitations visible as density modulations at the magnetic length. Increasing the cloud density smoothly connects this behaviour to a quantum version of the Kelvin-Helmholtz hydrodynamic instability, driven by the sheared internal flow profile of the rapidly rotating condensate. At long times the condensate self-organizes into a persistent array of droplets, separated by vortex streets, which are stabilized by a balance of interactions and effective magnetic forces.
We employ the exact diagonalization method to analyze the possibility of generating strongly correlated states in two-dimensional clouds of ultracold bosonic atoms which are subjected to a geometric gauge field created by coupling two internal atomic states to a laser beam. Tuning the gauge field strength, the system undergoes stepwise transitions between different ground states, which we describe by analytical trial wave functions, amongst them the Pfaffian, the Laughlin, and a Laughlin quasiparticle many-body state. The adiabatic following of the center of mass movement by the lowest energy dressed internal state, is lost by the mixing of the second internal state. This mixture can be controlled by the intensity of the laser field. The non-adiabaticity is inherent to the considered setup, and is shown to play the role of circular asymmetry. We study its influence on the properties of the ground state of the system. Its main effect is to reduce the overlap of the numerical solutions with the analytical trial expressions by occupying states with higher angular momentum. Thus, we propose generalized wave functions arising from the Laughlin and Pfaffian wave function by including components, where extra Jastrow factors appear, while preserving important features of these states. We analyze quasihole excitations over the Laughlin and generalized Laughlin states, and show that they possess effective fractional charge and obey anyonic statistics. Finally, we study the energy gap over the Laughlin state as the number of particles is increased keeping the chemical potential fixed. The gap is found to decrease as the number of particles is increased, indicating that the observability of the Laughlin state is restricted to a small number of particles.
202 - Fadi Sun , Junsen Wang , Jinwu Ye 2017
We study possible many body phenomena in the Quantum Anomalous Hall system of weakly interacting spinor bosons in a square lattice. There are various novel spin-bond correlated superfluids (SF) and quantum or topological phase transitions among these SF phases. One transition is a first order one driven by roton droppings ( but with non-zero gaps $ Delta_R $ ) tuned by the Zeeman field $ h $. Another is a second order bosonic Lifshitz transition with the dynamic exponents $ z_x=z_y=2 $ and an accompanying $ [C_4 times C_4]_D $ symmetry breaking. It is driven by the softening of the superfluid Goldstone mode tuned by the ratio of spin-orbit coupled (SOC) strength over the hopping strength. The two phase boundaries meet at a topological tri-critical (TT) point which separates the $ h=0 $ line into two SF phases with $ N=2 $ and $ N=4 $ condensation momenta respectively. At the $ h=0 $ line where the system has an anti-unitary $ Z_2 $ Reflection symmetry, there are infinite number of classically degenerate family of states on both sides. We perform a systematic order from quantum disorder analysis to find the quantum ground states, also calculate the roton gaps $ Delta_R $ generated by the order from disorder mechanism on both sides of the TT point. The $ N=2 $ and $ N=4 $ SF phases have the same spin-orbital XY-AFM spin structure, respect the anti-unitary symmetry and break the $ [C_4 times C_4]_D $ symmetry, so they be distinguished only by the different topology of the BEC condensation momenta instead of by any differences in the symmetry breaking patterns. All these novel quantum or topological phenomena can be probed in the recent experimentally realized weakly interacting Quantum Anomalous Hall (QAH) model of $ ^87 Rb $ by Wu, {sl et.al}, Science 354, 83-88 (2016).
We report on the formation of heteronuclear quantum droplets in an attractive bosonic mixture of 41K and 87Rb. We observe long-lived self-bound states, both in free space and in an optical waveguide. In the latter case, the dynamics under the effect of a species-dependent force confirms their bound nature. By tuning the interactions from the weakly to the strongly attractive regime, we study the transition from expanding to localized states, in both geometries. We compare the experimental results with beyond mean-field theory and we find a good agreement in the full range of explored interactions. Our findings open up the production of long-lived droplets with important implications for further research.
Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian and cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity. For particle numbers significantly larger than unity, the required angular momentum is very large and it can be obtained only for spinning frequencies extremely near to the deconfinement limit; consequently, the required control on experimental parameters turns out to be far too stringent. Here we propose to follow instead a dynamic path starting from the gas confined in a rotating ring. The large moment of inertia of the fluid facilitates the access to states with a large angular momentum, corresponding to a giant vortex. The initial ring-shaped trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum Hall regime. We provide clear numerical evidence that for a relatively broad range of initial angular frequencies, the giant vortex state is adiabatically connected to the bosonic $ u=1/2$ Laughlin state, and we discuss the scaling to many particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا