No Arabic abstract
We employ the exact diagonalization method to analyze the possibility of generating strongly correlated states in two-dimensional clouds of ultracold bosonic atoms which are subjected to a geometric gauge field created by coupling two internal atomic states to a laser beam. Tuning the gauge field strength, the system undergoes stepwise transitions between different ground states, which we describe by analytical trial wave functions, amongst them the Pfaffian, the Laughlin, and a Laughlin quasiparticle many-body state. The adiabatic following of the center of mass movement by the lowest energy dressed internal state, is lost by the mixing of the second internal state. This mixture can be controlled by the intensity of the laser field. The non-adiabaticity is inherent to the considered setup, and is shown to play the role of circular asymmetry. We study its influence on the properties of the ground state of the system. Its main effect is to reduce the overlap of the numerical solutions with the analytical trial expressions by occupying states with higher angular momentum. Thus, we propose generalized wave functions arising from the Laughlin and Pfaffian wave function by including components, where extra Jastrow factors appear, while preserving important features of these states. We analyze quasihole excitations over the Laughlin and generalized Laughlin states, and show that they possess effective fractional charge and obey anyonic statistics. Finally, we study the energy gap over the Laughlin state as the number of particles is increased keeping the chemical potential fixed. The gap is found to decrease as the number of particles is increased, indicating that the observability of the Laughlin state is restricted to a small number of particles.
The dominance of interactions over kinetic energy lies at the heart of strongly correlated quantum matter, from fractional quantum Hall liquids, to atoms in optical lattices and twisted bilayer graphene. Crystalline phases often compete with correlated quantum liquids, and transitions between them occur when the energy cost of forming a density wave approaches zero. A prime example occurs for electrons in high magnetic fields, where the instability of quantum Hall liquids towards a Wigner crystal is heralded by a roton-like softening of density modulations at the magnetic length. Remarkably, interacting bosons in a gauge field are also expected to form analogous liquid and crystalline states. However, combining interactions with strong synthetic magnetic fields has been a challenge for experiments on bosonic quantum gases. Here, we study the purely interaction-driven dynamics of a Landau gauge Bose-Einstein condensate in and near the lowest Landau level (LLL). We observe a spontaneous crystallization driven by condensation of magneto-rotons, excitations visible as density modulations at the magnetic length. Increasing the cloud density smoothly connects this behaviour to a quantum version of the Kelvin-Helmholtz hydrodynamic instability, driven by the sheared internal flow profile of the rapidly rotating condensate. At long times the condensate self-organizes into a persistent array of droplets, separated by vortex streets, which are stabilized by a balance of interactions and effective magnetic forces.
Interacting bosonic atoms under strong gauge fields undergo a series of phase transitions that take the cloud from a simple Bose-Einstein condensate all the way to a family of fractional-quantum-Hall-type states [M. Popp, B. Paredes, and J. I. Cirac, Phys. Rev. A 70, 053612 (2004)]. In this work we demonstrate that the Hall response of the atoms can be used to locate the phase transitions and characterize the ground state of the many-body state. Moreover, the same response function reveals within some regions of the parameter space, the structure of the spectrum and the allowed transitions to excited states. We verify numerically these ideas using exact diagonalization for a small number of atoms, and provide an experimental protocol to implement the gauge fields and probe the linear response using a periodically driven optical lattice. Finally, we discuss our theoretical results in relation to recent experiments with condensates in artificial magnetic fields [ L. J. LeBlanc, K. Jimenez-Garcia, R. A. Williams, M. C. Beeler, A. R. Perry, W. D. Phillips, and I. B. Spielman, Proc. Natl. Acad. Sci. USA 109, 10811 (2012)] and we analyze the role played by vortex states in the Hall response.
We investigate the ground state properties of a bosonic Harper-Hofstadter model with local interactions on a finite cylindrical lattice with filling fraction $ u=1/2$. We find that our system supports topologically ordered states by calculating the topological entanglement entropy, and its value is in good agreement with the theoretical value for the $ u=1/2$ Laughlin state. By exploring the behaviour of the density profiles, edge currents and single-particle correlation functions, we find that the ground state on the cylinder shows all signatures of a fractional quantum Hall state even for large values of the magnetic flux density. Furthermore, we determine the dependence of the correlation functions and edge currents on the interaction strength. We find that depending on the magnetic flux density, the transition towards Laughlin-like behaviour can be either smooth or happens abruptly for some critical interaction strength.
Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian and cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity. For particle numbers significantly larger than unity, the required angular momentum is very large and it can be obtained only for spinning frequencies extremely near to the deconfinement limit; consequently, the required control on experimental parameters turns out to be far too stringent. Here we propose to follow instead a dynamic path starting from the gas confined in a rotating ring. The large moment of inertia of the fluid facilitates the access to states with a large angular momentum, corresponding to a giant vortex. The initial ring-shaped trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum Hall regime. We provide clear numerical evidence that for a relatively broad range of initial angular frequencies, the giant vortex state is adiabatically connected to the bosonic $ u=1/2$ Laughlin state, and we discuss the scaling to many particles.
We study incompressible ground states of bosons in a two-dimensional rotating square optical lattice. The system can be described by the Bose-Hubbard model in an effective uniform magnetic field present due to the lattice rotation. To study ground states of the system, we map it to a frustrated spin model, followed by Schwinger boson mean field theory and projective symmetry group analysis. Using symmetry analysis we identify bosonic fractional quantum Hall states, predicted for bosonic atoms in rotating optical lattices, with possible stable gapped spin liquid states within the Schwinger boson formalism. In particular, we find that previously found fractional quantum Hall states induced by the lattice potential, and with no counterpart in the continuum [G. Moller, and N. R. Cooper, Phys. Rev. Lett. textbf{103}, 105303 (2009)], correspond to $pi$ flux spin liquid states of the frustrated spin model.