Do you want to publish a course? Click here

The Young and Nearby Normal Type Ia Supernova 2018gv: UV-Optical Observations and the Earliest Spectropolarimetry

124   0   0.0 ( 0 )
 Added by Yi Yang
 Publication date 2019
  fields Physics
and research's language is English
 Authors Yi Yang




Ask ChatGPT about the research

The non-detection of companion stars in Type Ia supernova (SN) progenitor systems lends support to the notion of double-degenerate (DD) systems and explosions triggered by the merging of two white dwarfs. This very asymmetric process should lead to a conspicuous polarimetric signature. By contrast, observations consistently find very low continuum polarization as the signatures from the explosion process largely dominate over the pre-explosion configuration within several days. Critical information about the interaction of the ejecta with a companion and any circumstellar matter is encoded in the early polarization spectra. In this study, we obtain spectropolarimetry of SN,2018gv with the ESO Very Large Telescope at $-$13.6 days relative to the $B-$band maximum light, or $sim$5 days after the estimated explosion --- the earliest spectropolarimetric observations to date of any Type Ia SN. These early observations still show a low continuum polarization ($lesssim$0.2%) and moderate line polarization (0.30$pm$0.04% for the prominent ion{Si}{2} $lambda$6355 feature and 0.85$pm$0.04% for the high-velocity Ca component). The high degree of spherical symmetry implied by the low line and continuum polarization at this early epoch is consistent with explosion models of delayed detonations and is inconsistent with the merger-induced explosion scenario. The dense UV and optical photometry and optical spectroscopy within the first $sim$100 days after the maximum light indicate that SN,2018gv is a normal Type Ia SN with similar spectrophotometric behavior to SN,2011fe.



rate research

Read More

Supernova (SN) 2017cbv in NGC 5643 is one of a handful of type Ia supernovae (SNe~Ia) reported to have excess blue emission at early times. This paper presents extensive $BVRIYJHK_s$-band light curves of SN 2017cbv, covering the phase from $-16$ to $+125$ days relative to $B$-band maximum light. SN 2017cbv reached a $B$-band maximum of 11.710$pm$0.006~mag, with a post-maximum magnitude decline $Delta m_{15}(B)$=0.990$pm$0.013 mag. The supernova suffered no host reddening based on Phillips intrinsic color, Lira-Phillips relation, and the CMAGIC diagram. By employing the CMAGIC distance modulus $mu=30.58pm0.05$~mag and assuming $H_0$=72~$rm km s^{-1} Mpc^{-1}$, we found that 0.73~msun $^{56}$Ni was synthesized during the explosion of SN 2017cbv, which is consistent with estimates using reddening-free and distance-free methods via the phases of the secondary maximum of the NIR-band light curves. We also present 14 near-infrared spectra from $-18$ to $+49$~days relative to the $B$-band maximum light, providing constraints on the amount of swept-up hydrogen from the companion star in the context of the single degenerate progenitor scenario. No $Pa{beta}$ emission feature was detected from our post-maximum NIR spectra, placing a hydrogen mass upper limit of 0.1 $M_{odot}$. The overall optical/NIR photometric and NIR spectral evolution of SN 2017cbv is similar to that of a normal SN~Ia, even though its early evolution is marked by a flux excess no seen in most other well-observed normal SNe~Ia. We also compare the exquisite light curves of SN 2017cbv with some $M_{ch}$ DDT models and sub-$M_{ch}$ double detonation models.
We present ultraviolet (UV) and optical photometry and spectra of the 1999aa-like supernova (SN) iPTF14bdn. The UV data were observed using the Swift Ultraviolet/Optical Telescope (UVOT) and constitute the first UV spectral series of a 1999aa-like SN. From the photometry we measure $Delta m_{15}({it B}),=,0.84 pm0.05$ mag and blue UV colors at epochs earlier than $-5$ days. The spectra show that the early-time blue colors are the result of less absorption between $2800 - 3200 ,AA~$ than is present in normal SNe Ia. Using model spectra fits of the data at $-10 $ and $+10 $ days, we identify the origin of this spectral feature to be a temperature effect in which doubly ionized iron group elements create an opacity window. We determine that the detection of high temperatures and large quantities of iron group elements at early epochs imply the mixing of a high Ni mass into the outer layers of the SN ejecta. We also identify the source of the I-band secondary maximum in iPTF14bdn to be the decay of Fe III to Fe II, as is seen in normal SNe Ia.
We present well-sampled $UBVRIJHK$ photometry of SN 2002fk starting 12 days before maximum light through 122 days after peak brightness, along with a series of 15 optical spectra from -4 to +95 days since maximum. Our observations show the presence of C II lines in the early-time spectra of SN 2002fk, expanding at ~11,000 km s$^{-1}~$ and persisting until ~8 days past maximum light with a velocity of $sim$9,000 km s$^{-1}~$. SN 2002fk is characterized by a small velocity gradient of $dot v_{Si~II}=26$ km s$^{-1}$ day$^{-1}$, possibly caused by an off-center explosion with the ignition region oriented towards the observer. The connection between viewing angle of an off-center explosion and the presence of C II in the early time spectrum suggests that the observation of C II could be also due to a viewing angle effect. Adopting the Cepheid distance to NGC 1309 we provide the first $H_{0}$ value based on near-IR measurements of a Type Ia supernova between 63.0$pm$ 0.8 ($pm$ 2.8 systematic) and 66.7$pm$1.0 ($pm$ 3.5 systematic) km/s/Mpc, depending on the absolute magnitude/decline rate relationship adopted. It appears that the near-IR yields somewhat lower (6-9 %) $H_0$ values than the optical. It is essential to further examine this issue by (1) expanding the sample of high-quality near-IR light curves of SNe in the Hubble flow, and (2) increasing the number of nearby SNe with near-IR SN light curves and precise Cepheid distances, which affords the promise to deliver a more precise determination of $H_0$.
We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I {lambda}1.0693 {mu}m is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II {lambda}1.0927 {mu}m velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate {Delta}m15. The prominent break at ~1.5 {mu}m is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with {Delta}m15. The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.
The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift $z=0.004523$) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before $B$-band maximum). Our first detection (pre-discovery) is merely $0.6pm0.5$ day after the FFLT, making SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but with a high velocity of ion{Si}{2} $lambda$6355 ($sim 12,600$,kms around peak brightness). The ion{Si}{2} $lambda$6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ($M_B approx -18.9 pm 0.2$ mag), and it reaches a $B$-band maximum about16.0~d after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na~I~D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the ion{Si}{2} line polarization is quite strong ($sim 0.9% pm 0.1%$) at peak brightness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا