Do you want to publish a course? Click here

Quantum Minimal Surfaces

61   0   0.0 ( 0 )
 Added by Joakim Arnlind
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss quantum analogues of minimal surfaces in Euclidean spaces and tori.



rate research

Read More

134 - Nima Moshayedi 2020
We consider a construction of observables by using methods of supersymmetric field theories. In particular, we give an extension of AKSZ-type observables using the Batalin-Vilkovisky structure of AKSZ theories to a formal global version with methods of formal geometry. We will consider the case where the AKSZ theory is split which will give an explicit construction for formal vector fields on base and fiber within the formal global action. Moreover, we consider the example of formal global generalized Wilson surface observables whose expectation values are invariants of higher-dimensional knots by using $BF$ field theory. These constructions give rise to interesting global gauge conditions such as the differential Quantum Master Equation and further extensions.
We prove the Makeenko-Migdal equation for two-dimensional Euclidean Yang-Mills theory on an arbitrary compact surface, possibly with boundary. In particular, we show that two of the proofs given by the first, third, and fourth authors for the plane case extend essentially without change to compact surfaces.
231 - Riccardo Iraso , Pavel Mnev 2018
In this paper we recover the non-perturbative partition function of 2D~Yang-Mills theory from the perturbative path integral. To achieve this goal, we study the perturbative path integral quantization for 2D~Yang-Mills theory on surfaces with boundaries and corners in the Batalin-Vilkovisky formalism (or, more precisely, in its adaptation to the setting with boundaries, compatible with gluing and cutting -- the BV-BFV formalism). We prove that cutting a surface (e.g. a closed one) into simple enough pieces -- building blocks -- and choosing a convenient gauge-fixing on the pieces, and assembling back the partition function on the surface, one recovers the known non-perturbative answers for 2D~Yang-Mills theory.
64 - V. Grassi , R.A. Leo , G. Soliani 1999
We show that certain infinitesimal operators of the Lie-point symmetries of the incompressible 3D Navier-Stokes equations give rise to vortex solutions with different characteristics. This approach allows an algebraic classification of vortices and throws light on the alignment mechanism between the vorticity and the vortex stretching vector. The symmetry algebra associated with the Navier-Stokes equations turns out to be infinite- dimensional. New vortical structures, generalizing in some cases well-known configurations such as, for example, the Burgers and Lundgren solutions, are obtained and discussed in relation to the value of the dynamic angle. A systematic treatment of the boundary conditions invariant under the symmetry group of the equations under study is also performed, and the corresponding invariant surfaces are recognized.
We introduce super quantum Airy structures, which provide a supersymmetric generalization of quantum Airy structures. We prove that to a given super quantum Airy structure one can assign a unique set of free energies, which satisfy a supersymmetric generalization of the topological recursion. We reveal and discuss various properties of these supersymmetric structures, in particular their gauge transformations, classical limit, peculiar role of fermionic variables, and graphical representation of recursion relations. Furthermore, we present various examples of super quantum Airy structures, both finite-dimensional -- which include well known superalgebras and super Frobenius algebras, and whose classification scheme we also discuss -- as well as infinite-dimensional, that arise in the realm of vertex operator super algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا