Do you want to publish a course? Click here

Wav2Pix: Speech-conditioned Face Generation using Generative Adversarial Networks

65   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Speech is a rich biometric signal that contains information about the identity, gender and emotional state of the speaker. In this work, we explore its potential to generate face images of a speaker by conditioning a Generative Adversarial Network (GAN) with raw speech input. We propose a deep neural network that is trained from scratch in an end-to-end fashion, generating a face directly from the raw speech waveform without any additional identity information (e.g reference image or one-hot encoding). Our model is trained in a self-supervised approach by exploiting the audio and visual signals naturally aligned in videos. With the purpose of training from video data, we present a novel dataset collected for this work, with high-quality videos of youtubers with notable expressiveness in both the speech and visual signals.



rate research

Read More

Speech is a means of communication which relies on both audio and visual information. The absence of one modality can often lead to confusion or misinterpretation of information. In this paper we present an end-to-end temporal model capable of directly synthesising audio from silent video, without needing to transform to-and-from intermediate features. Our proposed approach, based on GANs is capable of producing natural sounding, intelligible speech which is synchronised with the video. The performance of our model is evaluated on the GRID dataset for both speaker dependent and speaker independent scenarios. To the best of our knowledge this is the first method that maps video directly to raw audio and the first to produce intelligible speech when tested on previously unseen speakers. We evaluate the synthesised audio not only based on the sound quality but also on the accuracy of the spoken words.
Generative models are undoubtedly a hot topic in Artificial Intelligence, among which the most common type is Generative Adversarial Networks (GANs). These architectures let one synthesise artificial datasets by implicitly modelling the underlying probability distribution of a real-world training dataset. With the introduction of Conditional GANs and their variants, these methods were extended to generating samples conditioned on ancillary information available for each sample within the dataset. From a practical standpoint, however, one might desire to generate data conditioned on partial information. That is, only a subset of the ancillary conditioning variables might be of interest when synthesising data. In this work, we argue that standard Conditional GANs are not suitable for such a task and propose a new Adversarial Network architecture and training strategy to deal with the ensuing problems. Experiments illustrating the value of the proposed approach in digit and face image synthesis under partial conditioning information are presented, showing that the proposed method can effectively outperform the standard approach under these circumstances.
Recent studies have shown remarkable success in face image generations. However, most of the existing methods only generate face images from random noise, and cannot generate face images according to the specific attributes. In this paper, we focus on the problem of face synthesis from attributes, which aims at generating faces with specific characteristics corresponding to the given attributes. To this end, we propose a novel attributes aware face image generator method with generative adversarial networks called AFGAN. Specifically, we firstly propose a two-path embedding layer and self-attention mechanism to convert binary attribute vector to rich attribute features. Then three stacked generators generate $64 times 64$, $128 times 128$ and $256 times 256$ resolution face images respectively by taking the attribute features as input. In addition, an image-attribute matching loss is proposed to enhance the correlation between the generated images and input attributes. Extensive experiments on CelebA demonstrate the superiority of our AFGAN in terms of both qualitative and quantitative evaluations.
Video-to-speech is the process of reconstructing the audio speech from a video of a spoken utterance. Previous approaches to this task have relied on a two-step process where an intermediate representation is inferred from the video, and is then decoded into waveform audio using a vocoder or a waveform reconstruction algorithm. In this work, we propose a new end-to-end video-to-speech model based on Generative Adversarial Networks (GANs) which translates spoken video to waveform end-to-end without using any intermediate representation or separate waveform synthesis algorithm. Our model consists of an encoder-decoder architecture that receives raw video as input and generates speech, which is then fed to a waveform critic and a power critic. The use of an adversarial loss based on these two critics enables the direct synthesis of raw audio waveform and ensures its realism. In addition, the use of our three comparative losses helps establish direct correspondence between the generated audio and the input video. We show that this model is able to reconstruct speech with remarkable realism for constrained datasets such as GRID, and that it is the first end-to-end model to produce intelligible speech for LRW (Lip Reading in the Wild), featuring hundreds of speakers recorded entirely `in the wild. We evaluate the generated samples in two different scenarios -- seen and unseen speakers -- using four objective metrics which measure the quality and intelligibility of artificial speech. We demonstrate that the proposed approach outperforms all previous works in most metrics on GRID and LRW.
As deep learning is showing unprecedented success in medical image analysis tasks, the lack of sufficient medical data is emerging as a critical problem. While recent attempts to solve the limited data problem using Generative Adversarial Networks (GAN) have been successful in generating realistic images with diversity, most of them are based on image-to-image translation and thus require extensive datasets from different domains. Here, we propose a novel model that can successfully generate 3D brain MRI data from random vectors by learning the data distribution. Our 3D GAN model solves both image blurriness and mode collapse problems by leveraging alpha-GAN that combines the advantages of Variational Auto-Encoder (VAE) and GAN with an additional code discriminator network. We also use the Wasserstein GAN with Gradient Penalty (WGAN-GP) loss to lower the training instability. To demonstrate the effectiveness of our model, we generate new images of normal brain MRI and show that our model outperforms baseline models in both quantitative and qualitative measurements. We also train the model to synthesize brain disorder MRI data to demonstrate the wide applicability of our model. Our results suggest that the proposed model can successfully generate various types and modalities of 3D whole brain volumes from a small set of training data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا