No Arabic abstract
A measurement is deemed successful, if one can maximize the information gain by the measurement apparatus. Here, we ask if quantum coherence of the system imposes a limitation on the information gain during quantum measurement. First, we argue that the information gain in a quantum measurement is nothing but the coherent information or the distinct quantum information that one can send from the system to apparatus. We prove that the maximum information gain from a pure state, using a mixed apparatus is upper bounded by the initial coherence of the system. Further, we illustrate the measurement scenario in the presence of environment. We argue that the information gain is upper bounded by the entropy exchange between the system and the apparatus. Also, to maximize the information gain, both the initial coherence of the apparatus, and the final entanglement between the system and apparatus should be maximum. Moreover, we find that for a fixed amount of coherence in the final apparatus state the more robust apparatus is, the more will be the information gain.
In recent proposals for achieving optical super-resolution, variants of the Quantum Fisher Information (QFI) quantify the attainable precision. We find that claims about a strong enhancement of the resolution resulting from coherence effects are questionable because they refer to very small subsets of the data without proper normalization. When the QFI is normalized, accounting for the strength of the signal, there is no advantage of coherent sources over incoherent ones. Our findings have a bearing on further studies of the achievable precision of optical instruments.
We study the skew information-based coherence of quantum states and derive explicit formulas for Werner states and isotropic states in a set of autotensor of mutually unbiased bases (AMUBs). We also give surfaces of skew information-based coherence for Bell-diagonal states and a special class of X states in both computational basis and in mutually unbiased bases. Moreover, we depict the surfaces of the skew information-based coherence for Bell-diagonal states under various types of local nondissipative quantum channels. The results show similar as well as different features compared with relative entropy of coherence and l1 norm of coherence.
Based on the nonincreasing property of quantum coherence via skew information under incoherent completely positive and trace-preserving maps, we propose a non-Markovianity measure for open quantum processes. As applications, by applying the proposed measure to some typical noisy channels, we find that it is equivalent to the three previous measures of non-Markovianity for phase damping and amplitude damping channels, i.e., the measures based on the quantum trace distance, dynamical divisibility, and quantum mutual information. For the random unitary channel, it is equivalent to the non-Markovianity measure based on $l_1$ norm of coherence for a class of output states and it is incompletely equivalent to the measure based on dynamical divisibility. We also use the modified Tsallis relative $alpha$ entropy of coherence to detect the non-Markovianity of dynamics of quantum open systems, the results show that the modified Tsallis relative $alpha$ entropy of coherence are more comfortable than the original Tsallis relative $alpha$ entropy of coherence for small $alpha$.
We perform a quantum information analysis for multi-mode Gaussian approximate position measurements, underlying noisy homodyning in quantum optics. The Gaussian maximizer property is established for the entropy reduction of these measurements which provides explicit formulas for computations including their entanglement-assisted capacity. The case of one mode is discussed in detail.
Previously a new scheme of quantum information processing based on spin coherent states of two component Bose-Einstein condensates was proposed (Byrnes {it et al.} Phys. Rev. A 85, 40306(R)). In this paper we give a more detailed exposition of the scheme, expanding on several aspects that were not discussed in full previously. The basic concept of the scheme is that spin coherent states are used instead of qubits to encode qubit information, and manipulated using collective spin operators. The scheme goes beyond the continuous variable regime such that the full space of the Bloch sphere is used. We construct a general framework for quantum algorithms to be executed using multiple spin coherent states, which are individually controlled. We illustrate the scheme by applications to quantum information protocols, and discuss possible experimental implementations. Decoherence effects are analyzed under both general conditions and for the experimental implementation proposed.