No Arabic abstract
Much of the focus of exoplanet atmosphere analysis in the coming decade will be atinfrared wavelengths, with the planned launches of the James Webb Space Telescope (JWST) and the Wide-Field Infrared Survey Telescope (WFIRST). However, without being placed in the context of broader wavelength coverage, especially in the optical and ultraviolet, infrared observations produce an incomplete picture of exoplanet atmospheres. Scattering information encoded in blue optical and near-UV observations can help determine whether muted spectral features observed in the infrared are due to a hazy/cloudy atmosphere, or a clear atmosphere with a higher mean molecular weight. UV observations can identify atmospheric escape and mass loss from exoplanet atmospheres, providing a greater understanding of the atmospheric evolution of exoplanets, along with composition information from above the cloud deck. In this white paper we focus on the science case for exoplanet observations in the near-UV; an accompanying white paper led by Eric Lopez will focus on the science case in the far-UV.
Atmospheric escape from close-in exoplanets is thought to be crucial in shaping observed planetary populations. Recently, significant progress has been made in observing this process in action through excess absorption in transit spectra and narrowband light curves. We present a 3D hydrodynamic simulation and radiative transfer post-processing method for modeling the interacting flows of escaping planetary atmosphere and stellar winds. We focus on synthetic transmission spectra of the helium 1083 nm line, and discuss a planetary outflow of fixed mass-loss rate that interacts with stellar winds of varying order of magnitude. The morphology of these outflows in differing stellar wind environments changes dramatically, from torii that completely encircle the star when the ram pressure of the stellar wind is low, to cometary tails of planetary outflow when the stellar wind ram pressure is high. Our results demonstrate that this interaction leaves important traces on line kinematics and spectral phase curves in the helium 1083 nm triplet. In particular, the confinement of outflows through wind--wind collisions leads to absorption that extends in phase and time well beyond the optical transit. We further demonstrate that these differences are reflected in light curves of He 1083 nm equivalent width as a function of transit phase. Our results suggest that combining high-resolution spectroscopy with narrowband photometry offers a path to observationally probe how stellar wind environments shape exoplanetary atmosphere escape.
We observed nine primary transits of the hot Jupiter TrES-3b in several optical and near-UV photometric bands from 2009 June to 2012 April in an attempt to detect its magnetic field. Vidotto, Jardine and Helling suggest that the magnetic field of TrES-3b can be constrained if its near-UV light curve shows an early ingress compared to its optical light curve, while its egress remains unaffected. Predicted magnetic field strengths of Jupiter-like planets should range between 8 G and 30 G. Using these magnetic field values and an assumed B_star of 100 G, the Vidotto et al. method predicts a timing difference of 5-11 min. We did not detect an early ingress in our three nights of near-UV observations, despite an average cadence of 68 s and an average photometric precision of 3.7 mmag. However, we determined an upper limit of TrES-3bs magnetic field strength to range between 0.013 and 1.3 G (for a 1-100 G magnetic field strength range for the host star, TrES-3) using a timing difference of 138 s derived from the Nyquist-Shannon sampling theorem. To verify our results of an abnormally small magnetic field strength for TrES-3b and to further constrain the techniques of Vidotto et al., we propose future observations of TrES-3b with other platforms capable of achieving a shorter near-UV cadence. We also present a refinement of the physical parameters of TrES-3b, an updated ephemeris and its first published near-UV light curve. We find that the near-UV planetary radius of Rp = 1.386+0.248-0.144 RJup is consistent with the planets optical radius.
Recent transmission spectroscopy has revealed that clouds and hazes are common in the atmospheres of close-in exoplanets. In this study, using the photochemical, microphysical, and transmission spectrum models for close-in warm ($lesssim$ 1000 K) exoplanet atmospheres that we newly developed in our preceding paper (Kawashima & Ikoma 2018), we investigate the vertical distributions of haze particles and gaseous species and the resultant transmission spectra over wide ranges of the model parameters including UV irradiation intensity, metallicity, carbon-to-oxygen ratio (C/O), eddy diffusion coefficient, and temperature. The sensitivity to metallicity is of particular interest. We find that a rise in metallicity leads basically to reducing the photodissociation rates of the hydrocarbons and therefore the haze monomer production rates. This is due to an enhanced photon-shielding effect by the major photon absorbers such as $mathrm{H_2O}$, $mathrm{CO}$, $mathrm{CO_2}$, and $mathrm{O_2}$, existing at higher altitudes than the hydrocarbons. We also find that at relatively short wavelengths ($lesssim$ 2-3 $mu$m), the absorption features in transmission spectra are most pronounced for moderate metallicities such as 100 times the solar metallicity, whereas the lower the metallicity the stronger the absorption features at relatively long wavelengths ($gtrsim$ 2-3 $mu$m), where the contribution of haze is small. These are because of the two competing effects of reduced haze production rate and atmospheric scale height for higher metallicities. For the other model parameters, we show that stronger absorption features appear in transmission spectra of the atmospheres with lower UV irradiation, lower C/O ratio, higher eddy diffusion coefficient, and higher temperature.
Recently, properties of exoplanet atmospheres have been constrained via multi-wavelength transit observation, which measures an apparent decrease in stellar brightness during planetary transit in front of its host star (called transit depth). Sets of transit depths so far measured at different wavelengths (called transmission spectra) are somewhat diverse: Some show steep spectral slope features in the visible, some contain featureless spectra in the near-infrared, some show distinct features from radiative absorption by gaseous species. These facts infer the existence of haze in the atmospheres especially of warm, relatively low-density super-Earths and mini-Neptunes. Previous studies that addressed theoretical modeling of transmission spectra of hydrogen-dominated atmospheres with haze used some assumed distribution and size of haze particles. In this study, we model the atmospheric chemistry, derive the spatial and size distributions of haze particles by simulating the creation, growth and settling of hydrocarbon haze particles directly, and develop transmission spectrum models of UV-irradiated, solar-abundance atmospheres of close-in warm ($sim$ 500 K) exoplanets. We find that the haze is distributed in the atmosphere much more broadly than previously assumed and consists of particles of various sizes. We also demonstrate that the observed diversity of transmission spectra can be explained by the difference in the production rate of haze monomers, which is related to the UV irradiation intensity from host stars.
High-resolution Doppler spectroscopy is a powerful tool for identifying molecular species in the atmospheres of both transiting and non-transiting exoplanets. Currently, such data is analysed using cross-correlation techniques to detect the Doppler shifting signal from the orbiting planet. In this paper we demonstrate that, compared to cross-correlation methods currently used, the technique of Doppler tomography has improved sensitivity in detecting the subtle signatures expected from exoplanet atmospheres. This is partly due to the use of a regularizing statistic, which acts to suppress noise, coupled to the fact that all the data is fit simultaneously. In addition, we show that the technique can also effectively suppress contanimating spectral features that may arise due to overlapping lines, repeating line patterns, or the use of incorrect linelists. These issues can confuse conventional cross-correlation approaches, primarily due to aliasing issues inherent in such techniques, whereas Doppler tomography is less susceptible to such effects. In particular, Doppler tomography shows exceptional promise for simultaneously detecting multiple line species (e.g. isotopologues), even when there are high contrasts between such species -- and far outperforms current CCF analyses in this respect. Finally, we demonstrate that Doppler tomography is capable of recovering molecular signals from exoplanets using real data, by confirming the strong detection of CO in the atmosphere of Tau Boo b. We recover a signal with a planetary radial velocity semi-amplitude Kp = 109.6 +/- 2.2 km/s, in excellent agreement with the previously reported value of 110.0 +/- 3.2 km/s.