No Arabic abstract
Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and low magnetic field. We observed in Lu2BiFe4GaO12 and enhancement 700 % greater than that in a YIG film and at very low magnetic fields around 10-1 T, almost one order of magnitude lower than that of YIG. The result can be explained by the change in the magnon dispersion induced by magnetic compensation due to the presence of non-magnetic ion substitutions. Our study provides a way to tune the magnon response in a crystal by chemical doping with potential applications for spintronic devices.
We performed temperature-dependent optical pump - THz emission measurements in Y3Fe5O12 (YIG)|Pt from 5 K to room temperature in the presence of an externally applied magnetic field. We study the temperature dependence of the spin Seebeck effect and observe a continuous increase as temperature is decreased, opposite to what is observed in electrical measurements where the spin Seebeck effect is suppressed as 0K is approached. By quantitatively analysing the different contributions we isolate the temperature dependence of the spin-mixing conductance and observe features that are correlated to the bands of magnon spectrum in YIG.
Giant magnetocaloric effect is widely achieved in hexagonal MnMX-based (M = Co or Ni, X = Si or Ge) ferromagnets at their first-order magnetostructural transition. However, the thermal hysteresis and the low sensitivity of the magnetostructural transition to the magnetic field inevitably lead to a sizeable irreversibility of the low-field magnetocaloric effect. In this work, we show an alternative way to realize a reversible low-field magnetocaloric effect in MnMX-based alloys by taking advantage of the second-order phase transition. With introducing Cu into Co in MnCoGe alloy, the martensitic transition is stabilized at high temperature, while the Curie temperature of the orthorhombic phase is reduced to room temperature. As a result, a second-order magnetic transition with negligible thermal hysteresis and a large magnetization change can be observed, enabling a large reversible magnetocaloric effect. By both calorimetric and direct measurements, a reversible adiabatic temperature change of about 1 K is obtained under a field change of 0-1 T at 304 K, which is larger than that obtained in a first-order magnetostructural transition. To get a better insight into the origin of these experimental results, first-principles calculations are carried out to characterize the chemical bonds and the magnetic exchange interaction. Our work provides a new understanding of the MnCoGe alloy and indicates a feasible route to improve the reversibility of the low-field magnetocaloric effect in the MnMX system.
Using a simplified microscopic model of coupled spin and lattice excitations in a ferromagnetic insulator we evaluate the magnetic-field dependence of the spin Seebeck effect at low temperatures. The model includes Heisenberg exchange coupling, a harmonic lattice potential, and a pseudo-dipolar exchange interaction. Our approach goes beyond previous work [Phys. Rev. B 98, 134421 (2018)] in that it does not rely on the a priori assumption of a fast equilibration of the magnon and phonon distributions. Our theory shows that singular features in the magnetic-field dependence of the spin Seebeck effect at low temperatures observed by Kikkawa et al. [Phys. Rev. Lett. 117, 207203 (2016)] are independent of the relative strength of magnon-impurity and phonon-impurity scattering.
Strongly correlated Kagome magnets are promising candidates for achieving controllable topological devices owing to the rich interplay between inherent Dirac fermions and correlation-driven magnetism. Here we report tunable local magnetism and its intriguing control of topological electronic response near room temperature in the Kagome magnet Fe3Sn2 using small angle neutron scattering, muon spin rotation, and magnetoresistivity measurement techniques. The average bulk spin direction and magnetic domain texture can be tuned effectively by small magnetic fields. Magnetoresistivity, in response, exhibits a measurable degree of anisotropic weak localization behavior, which allows the direct control of Dirac fermions with strong electron correlations. Our work points to a novel platform for manipulating emergent phenomena in strongly-correlated topological materials relevant to future applications.
We investigate the inverse spin Hall voltage of a 10nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 (YIG) and NiFe2O4 (NFO) with a temperature gradient in the film plane. We observe characteristics typical of the spin Seebeck effect, although we do not observe a change of sign of the voltage at the Pt strip when it is moved from hot to cold side, which is believed to be the most striking feature of the transverse spin Seebeck effect. Therefore, we relate the observed voltages to the longitudinal spin Seebeck effect generated by a parasitic out-of-plane temperature gradient, which can be simulated by contact tips of different material and heat conductivities and by tip heating. This work gives new insights into the interpretation of transverse spin Seebeck effect experiments, which are still under discussion.