No Arabic abstract
Single- and few-layered InSe flakes are produced by the liquid-phase exfoliation of beta-InSe single crystals in 2-propanol, obtaining stable dispersions with a concentration as high as 0.11 g/L. Ultracentrifugation is used to tune the morphology, i.e., the lateral size and thickness of the as-produced InSe flakes. We demonstrate that the obtained InSe flakes have maximum lateral sizes ranging from 30 nm to a few um, and thicknesses ranging from 1 to 20 nm, with a max population centred at ~ 5 nm, corresponding to 4 Se-In-In-Se quaternary layers. We also show that no formation of further InSe-based compounds (such as In2Se3) or oxides occurs during the exfoliation process. The potential of these exfoliated-InSe few-layer flakes as a catalyst for hydrogen evolution reaction (HER) is tested in hybrid single-walled carbon nanotubes/InSe heterostructures. We highlight the dependence of the InSe flakes morphologies, i.e., surface area and thickness, on the HER performances achieving best efficiencies with small flakes offering predominant edge effects. Our theoretical model unveils the origin of the catalytic efficiency of InSe flakes, and correlates the catalytic activity to the Se vacancies at the edge of the flakes.
Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with naturally occurring out-of-plane luminescent dipole orientation. Here we measure the far-field photoluminescence intensity distribution of bulk InSe and two-dimensional InSe, WSe$_2$ and MoSe$_2$. We demonstrate, with the support of ab-initio calculations, that layered InSe flakes sustain luminescent excitons with an intrinsic out-of-plane orientation, in contrast with the in-plane orientation of dipoles we find in two-dimensional WSe$_2$ and MoSe$_2$ at room-temperature. These results, combined with the high tunability of the optical response and outstanding transport properties, position layered InSe as a promising semiconductor for novel optoelectronic devices, in particular for hybrid integrated photonic chips which exploit the out-of-plane dipole orientation.
The ability to efficiently evolve hydrogen via electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution reaction (HER) can be easily achieved from water if a voltage above the thermodynamic potential of the HER is applied. Large overpotentials are energetically inefficient but can be lowered with expensive platinum based catalysts. Replacement of Pt with inexpensive, earth abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. Towards this end, promising HER characteristics have been reported using 2H (trigonal prismatic) XS2 (where X = Mo or W) nanoparticles with a high concentration of metallic edges as electrocatalysts. The key challenges for HER with XS2 are increasing the number and catalytic activity of active sites. Here we report atomically thin nanosheets of chemically exfoliated WS2 as efficient catalysts for hydrogen evolution with very low overpotentials. Atomic-resolution transmission electron microscopy and spectroscopy analyses indicate that enhanced electrocatalytic activity of WS2 is associated with high concentration of strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Density functional theory calculations reveal that the presence of strain in the 1T phase leads to an enhancement of the density of states at the Fermi level and increases the catalytic activity of the WS2 nanosheet. Our results suggest that chemically exfoliated WS2 nanosheets could be interesting catalysts for hydrogen evolution.
The two-dimensional (2D) semiconductor indium selenide (InSe) has attracted significant interest due its unique electronic band structure, high electron mobility and wide tunability of its band gap energy achieved by varying the layer thickness. All these features make 2D InSe a potential candidate for advanced electronic and optoelectronic applications. Here, we report on the discovery of new polymorphs of InSe with enhanced electronic properties. Using a global structure search that combines artificial swarm intelligence with first-principles energetic calculations, we identify polymorphs that consist of a centrosymmetric monolayer belonging to the point group D$_{3d}$, distinct from the well-known polymorphs based on the D$_{3h}$ monolayers that lack inversion symmetry. The new polymorphs are thermodynamically and kinetically stable, and exhibit a wider optical spectral response and larger electron mobilities compared to the known polymorphs. We discuss opportunities to synthesize these newly discovered polymorphs and viable routes to identify them by X-ray diffraction, Raman spectroscopy and second harmonic generation experiments.
In this study, we report the mechanical properties and fracture mechanism of pre-cracked and defected InSe nanosheet samples using molecular dynamics (MD) simulations. We noticed that the failure of pre-cracked and defected InSe nanosheet is governed by brittle type fracture. Armchair directional bonds exhibit a greater resistance for crack propagation relative to the zigzag directional ones. Thus, fracture strength of the pre-cracked sheet is slightly higher for zigzag directional loading than that for armchair. We evaluated the limitation of the applicability of Griffiths criterion for single layer (SL) InSe sheet for nano-cracks as the brittle failure of Griffith prediction demonstrates significant differences with the MD fracture strength. We inspected the effect of temperature on the mechanical properties of the pre-cracked samples of SLInSe. We also discussed the fracture mechanism of both defected and pre-cracked structure at length.
We report piezoelectric response in liquid phase exfoliated MoS2 nanosheets with desired structure and morphology. The piezoelectric effect in liquid phase exfoliated few layers of MoS2 flakes is interesting as it may allow the scalable fabrication of electronic devices such as self-powered electronics, piezoelectric transformers, antennas and more. The piezo force microscopy (PFM) measurements were used to quantify the amplitude and phase loop, which shows strong piezoelectric coefficient. Herein, the piezoelectric response in few layers of MoS2 is attributed to the defects formed in it during the synthesis procedure. The presence of defects is confirmed by XPS analysis