No Arabic abstract
With the increasing research interest in dialogue response generation, there is an emerging branch formulating this task as selecting next sentences, where given the partial dialogue contexts, the goal is to determine the most probable next sentence. Following the recent success of the Transformer model, this paper proposes (1) a new variant of attention mechanism based on multi-head attention, called highway attention, and (2) a recurrent model based on transformer and the proposed highway attention, so-called Highway Recurrent Transformer. Experiments on the response selection task in the seventh Dialog System Technology Challenge (DSTC7) show the capability of the proposed model of modeling both utterance-level and dialogue-level information; the effectiveness of each module is further analyzed as well.
The response selection has been an emerging research topic due to the growing interest in dialogue modeling, where the goal of the task is to select an appropriate response for continuing dialogues. To further push the end-to-end dialogue model toward real-world scenarios, the seventh Dialog System Technology Challenge (DSTC7) proposed a challenging track based on real chatlog datasets. The competition focuses on dialogue modeling with several advanced characteristics: (1) natural language diversity, (2) capability of precisely selecting a proper response from a large set of candidates or the scenario without any correct answer, and (3) knowledge grounding. This paper introduces recurrent attention pooling networks (RAP-Net), a novel framework for response selection, which can well estimate the relevance between the dialogue contexts and the candidates. The proposed RAP-Net is shown to be effective and can be generalized across different datasets and settings in the DSTC7 experiments.
We study the learning of a matching model for dialogue response selection. Motivated by the recent finding that models trained with random negative samples are not ideal in real-world scenarios, we propose a hierarchical curriculum learning framework that trains the matching model in an easy-to-difficult scheme. Our learning framework consists of two complementary curricula: (1) corpus-level curriculum (CC); and (2) instance-level curriculum (IC). In CC, the model gradually increases its ability in finding the matching clues between the dialogue context and a response candidate. As for IC, it progressively strengthens the models ability in identifying the mismatching information between the dialogue context and a response candidate. Empirical studies on three benchmark datasets with three state-of-the-art matching models demonstrate that the proposed learning framework significantly improves the model performance across various evaluation metrics.
We study learning of a matching model for response selection in retrieval-based dialogue systems. The problem is equally important with designing the architecture of a model, but is less explored in existing literature. To learn a robust matching model from noisy training data, we propose a general co-teaching framework with three specific teaching strategies that cover both teaching with loss functions and teaching with data curriculum. Under the framework, we simultaneously learn two matching models with independent training sets. In each iteration, one model transfers the knowledge learned from its training set to the other model, and at the same time receives the guide from the other model on how to overcome noise in training. Through being both a teacher and a student, the two models learn from each other and get improved together. Evaluation results on two public data sets indicate that the proposed learning approach can generally and significantly improve the performance of existing matching models.
Task-oriented dialogue systems help users accomplish tasks such as booking a movie ticket and ordering food via conversation. Generative models parameterized by a deep neural network are widely used for next turn response generation in such systems. It is natural for users of the system to want to accomplish multiple tasks within the same conversation, but the ability of generative models to compose multiple tasks is not well studied. In this work, we begin by studying the effect of training human-human task-oriented dialogues towards improving the ability to compose multiple tasks on Transformer generative models. To that end, we propose and explore two solutions: (1) creating synthetic multiple task dialogue data for training from human-human single task dialogue and (2) forcing the encoder representation to be invariant to single and multiple task dialogues using an auxiliary loss. The results from our experiments highlight the difficulty of even the sophisticated variant of transformer model in learning to compose multiple tasks from single task dialogues.
This paper describes our approach to DSTC 9 Track 2: Cross-lingual Multi-domain Dialog State Tracking, the task goal is to build a Cross-lingual dialog state tracker with a training set in rich resource language and a testing set in low resource language. We formulate a method for joint learning of slot operation classification task and state tracking task respectively. Furthermore, we design a novel mask mechanism for fusing contextual information about dialogue, the results show the proposed model achieves excellent performance on DSTC Challenge II with a joint accuracy of 62.37% and 23.96% in MultiWOZ(en - zh) dataset and CrossWOZ(zh - en) dataset, respectively.