Do you want to publish a course? Click here

Reconstruction Methods in THz Single-pixel Imaging

57   0   0.0 ( 0 )
 Added by Martin Burger
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The aim of this paper is to discuss some advanced aspects of image reconstruction in single-pixel cameras, focusing in particular on detectors in the THz regime. We discuss the reconstruction problem from a computational imaging perspective and provide a comparison of the effects of several state-of-the art regularization techniques. Moreover, we focus on some advanced aspects arising in practice with THz cameras, which lead to nonlinear reconstruction problems: the calibration of the beam reminiscent of the Retinex problem in imaging and phase recovery problems. Finally we provide an outlook to future challenges in the area.



rate research

Read More

Non-smooth regularization is widely used in image reconstruction to eliminate the noise while preserving subtle image structures. In this work, we investigate the use of proximal Newton (PN) method to solve an optimization problem with a smooth data-fidelity term and total variation (TV) regularization arising from image reconstruction applications. Specifically, we consider a nonlinear Poisson-modeled single-energy X-ray computed tomography reconstruction problem with the data-fidelity term given by the I-divergence. The PN algorithm is compared to state-of-the-art first-order proximal algorithms, such as the well-established fast iterative shrinkage and thresholding algorithm (FISTA), both in terms of the number of iterations and time to solutions. We discuss the key factors that influence the performance of PN, including the strength of regularization, the stopping criterion for both sub-problem and main-problem, and the use of exact or approximated Hessian operators.
Two novel visual cryptography (VC) schemes are proposed by combining VC with single-pixel imaging (SPI) for the first time. It is pointed out that the overlapping of visual key images in VC is similar to the superposition of pixel intensities by a single-pixel detector in SPI. In the first scheme, QR-code VC is designed by using opaque sheets instead of transparent sheets. The secret image can be recovered when identical illumination patterns are projected onto multiple visual key images and a single detector is used to record the total light intensities. In the second scheme, the secret image is shared by multiple illumination pattern sequences and it can be recovered when the visual key patterns are projected onto identical items. The application of VC can be extended to more diversified scenarios by our proposed schemes.
This monograph covers some recent advances on a range of acceleration techniques frequently used in convex optimization. We first use quadratic optimization problems to introduce two key families of methods, momentum and nested optimization schemes, which coincide in the quadratic case to form the Chebyshev method whose complexity is analyzed using Chebyshev polynomials. We discuss momentum methods in detail, starting with the seminal work of Nesterov (1983) and structure convergence proofs using a few master templates, such as that of emph{optimized gradient methods} which have the key benefit of showing how momentum methods maximize convergence rates. We further cover proximal acceleration techniques, at the heart of the emph{Catalyst} and emph{Accelerated Hybrid Proximal Extragradient} frameworks, using similar algorithmic patterns. Common acceleration techniques directly rely on the knowledge of some regularity parameters of the problem at hand, and we conclude by discussing emph{restart} schemes, a set of simple techniques to reach nearly optimal convergence rates while adapting to unobserved regularity parameters.
66 - Shuming Jiao 2018
In single-pixel imaging (SPI), the target object is illuminated with varying patterns sequentially and an intensity sequence is recorded by a single-pixel detector without spatial resolution. A high quality object image can only be computationally reconstructed after a large number of illuminations, with disadvantages of long imaging time and high cost. Conventionally, object classification is performed after a reconstructed object image with good fidelity is available. In this paper, we propose to classify the target object with a small number of illuminations in a fast manner for Fourier SPI. A naive Bayes classifier is employed to classify the target objects based on the single-pixel intensity sequence without any image reconstruction and each sequence element is regarded as an object feature in the classifier. Simulation results demonstrate our proposed scheme can classify the number digit object images with high accuracy (e.g. 80% accuracy using only 13 illuminations, at a sampling ratio of 0.3%).
We demonstrate single-pixel imaging in the spectral domain by encoding Fourier probe patterns onto the spectrum of a superluminescent laser diode using a programmable optical filter. As a proof-of-concept, we measure the wavelength-dependent transmission of a Michelson interferometer and a wavelength-division multiplexer. Our results open new perspectives for remote broadband measurements with possible applications in industrial, biological or security applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا