Do you want to publish a course? Click here

IvaNet: Learning to jointly detect and segment objets with the help of Local Top-Down Modules

65   0   0.0 ( 0 )
 Added by Shihua Huang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Driven by Convolutional Neural Networks, object detection and semantic segmentation have gained significant improvements. However, existing methods on the basis of a full top-down module have limited robustness in handling those two tasks simultaneously. To this end, we present a joint multi-task framework, termed IvaNet. Different from existing methods, our IvaNet backwards abstract semantic information from higher layers to augment lower layers using local top-down modules. The comparisons against some counterparts on the PASCAL VOC and MS COCO datasets demonstrate the functionality of IvaNet.



rate research

Read More

The 3D volumetric shape of the hearts left ventricle (LV) myocardium (MYO) wall provides important information for diagnosis of cardiac disease and invasive procedure navigation. Many cardiac image segmentation methods have relied on detection of region-of-interest as a pre-requisite for shape segmentation and modeling. With segmentation results, a 3D surface mesh and a corresponding point cloud of the segmented cardiac volume can be reconstructed for further analyses. Although state-of-the-art methods (e.g., U-Net) have achieved decent performance on cardiac image segmentation in terms of accuracy, these segmentation results can still suffer from imaging artifacts and noise, which will lead to inaccurate shape modeling results. In this paper, we propose a PC-U net that jointly reconstructs the point cloud of the LV MYO wall directly from volumes of 2D CT slices and generates its segmentation masks from the predicted 3D point cloud. Extensive experimental results show that by incorporating a shape prior from the point cloud, the segmentation masks are more accurate than the state-of-the-art U-Net results in terms of Dices coefficient and Hausdorff distance.The proposed joint learning framework of our PC-U net is beneficial for automatic cardiac image analysis tasks because it can obtain simultaneously the 3D shape and segmentation of the LV MYO walls.
Most online multi-object trackers perform object detection stand-alone in a neural net without any input from tracking. In this paper, we present a new online joint detection and tracking model, TraDeS (TRAck to DEtect and Segment), exploiting tracking clues to assist detection end-to-end. TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features for improving current object detection and segmentation. Effectiveness and superiority of TraDeS are shown on 4 datasets, including MOT (2D tracking), nuScenes (3D tracking), MOTS and Youtube-VIS (instance segmentation tracking). Project page: https://jialianwu.com/projects/TraDeS.html.
Real-world visual recognition requires handling the extreme sample imbalance in large-scale long-tailed data. We propose a divide&conquer strategy for the challenging LVIS task: divide the whole data into balanced parts and then apply incremental learning to conquer each one. This derives a novel learning paradigm: class-incremental few-shot learning, which is especially effective for the challenge evolving over time: 1) the class imbalance among the old-class knowledge review and 2) the few-shot data in new-class learning. We call our approach Learning to Segment the Tail (LST). In particular, we design an instance-level balanced replay scheme, which is a memory-efficient approximation to balance the instance-level samples from the old-class images. We also propose to use a meta-module for new-class learning, where the module parameters are shared across incremental phases, gaining the learning-to-learn knowledge incrementally, from the data-rich head to the data-poor tail. We empirically show that: at the expense of a little sacrifice of head-class forgetting, we can gain a significant 8.3% AP improvement for the tail classes with less than 10 instances, achieving an overall 2.0% AP boost for the whole 1,230 classes.
179 - Yuhao Huang , Xin Yang , Yuxin Zou 2021
Nodule segmentation from breast ultrasound images is challenging yet essential for the diagnosis. Weakly-supervised segmentation (WSS) can help reduce time-consuming and cumbersome manual annotation. Unlike existing weakly-supervised approaches, in this study, we propose a novel and general WSS framework called Flip Learning, which only needs the box annotation. Specifically, the target in the label box will be erased gradually to flip the classification tag, and the erased region will be considered as the segmentation result finally. Our contribution is three-fold. First, our proposed approach erases on superpixel level using a Multi-agent Reinforcement Learning framework to exploit the prior boundary knowledge and accelerate the learning process. Second, we design two rewards: classification score and intensity distribution reward, to avoid under- and over-segmentation, respectively. Third, we adopt a coarse-to-fine learning strategy to reduce the residual errors and improve the segmentation performance. Extensively validated on a large dataset, our proposed approach achieves competitive performance and shows great potential to narrow the gap between fully-supervised and weakly-supervised learning.
Tasks related to human hands have long been part of the computer vision community. Hands being the primary actuators for humans, convey a lot about activities and intents, in addition to being an alternative form of communication/interaction with other humans and machines. In this study, we focus on training a single feedforward convolutional neural network (CNN) capable of executing many hand related tasks that may be of use in autonomous and semi-autonomous vehicles of the future. The resulting network, which we refer to as HandyNet, is capable of detecting, segmenting and localizing (in 3D) driver hands inside a vehicle cabin. The network is additionally trained to identify handheld objects that the driver may be interacting with. To meet the data requirements to train such a network, we propose a method for cheap annotation based on chroma-keying, thereby bypassing weeks of human effort required to label such data. This process can generate thousands of labeled training samples in an efficient manner, and may be replicated in new environments with relative ease.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا