Do you want to publish a course? Click here

Bayesian Estimations for Diagonalizable Bilinear SPDEs

225   0   0.0 ( 0 )
 Added by Igor Cialenco
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The main goal of this paper is to study the parameter estimation problem, using the Bayesian methodology, for the drift coefficient of some linear (parabolic) SPDEs driven by a multiplicative noise of special structure. We take the spectral approach by assuming that one path of the first $N$ Fourier modes of the solution is continuously observed over a finite time interval. First, we show that the model is regular and fits into classical local asymptotic normality framework, and thus the MLE and the Bayesian estimators are weakly consistent, asymptotically normal, efficient, and asymptotically equivalent in the class of loss functions with polynomial growth. Secondly, and mainly, we prove a Bernstein-Von Mises type result, that strengthens the existing results in the literature, and that also allows to investigate the Bayesian type estimators with respect to a larger class of priors and loss functions than that covered by classical asymptotic theory. In particular, we prove strong consistency and asymptotic normality of Bayesian estimators in the class of loss functions of at most exponential growth. Finally, we present some numerical examples that illustrate the obtained theoretical results.



rate research

Read More

The coefficient function of the leading differential operator is estimated from observations of a linear stochastic partial differential equation (SPDE). The estimation is based on continuous time observations which are localised in space. For the asymptotic regime with fixed time horizon and with the spatial resolution of the observations tending to zero, we provide rate-optimal estimators and establish scaling limits of the deterministic PDE and of the SPDE on growing domains. The estimators are robust to lower order perturbations of the underlying differential operator and achieve the parametric rate even in the nonparametric setup with a spatially varying coefficient. A numerical example illustrates the main results.
This work contributes to the limited literature on estimating the diffusivity or drift coefficient of nonlinear SPDEs driven by additive noise. Assuming that the solution is measured locally in space and over a finite time interval, we show that the augmented maximum likelihood estimator introduced in Altmeyer, Reiss (2020) retains its asymptotic properties when used for semilinear SPDEs that satisfy some abstract, and verifiable, conditions. The proofs of asymptotic results are based on splitting the solution in linear and nonlinear parts and fine regularity properties in $L^p$-spaces. The obtained general results are applied to particular classes of equations, including stochastic reaction-diffusion equations. The stochastic Burgers equation, as an example with first order nonlinearity, is an interesting borderline case of the general results, and is treated by a Wiener chaos expansion. We conclude with numerical examples that validate the theoretical results.
For in vivo research experiments with small sample sizes and available historical data, we propose a sequential Bayesian method for the Behrens-Fisher problem. We consider it as a model choice question with two models in competition: one for which the two expectations are equal and one for which they are different. The choice between the two models is performed through a Bayesian analysis, based on a robust choice of combined objective and subjective priors, set on the parameters space and on the models space. Three steps are necessary to evaluate the posterior probability of each model using two historical datasets similar to the one of interest. Starting from the Jeffreys prior, a posterior using a first historical dataset is deduced and allows to calibrate the Normal-Gamma informative priors for the second historical dataset analysis, in addition to a uniform prior on the model space. From this second step, a new posterior on the parameter space and the models space can be used as the objective informative prior for the last Bayesian analysis. Bayesian and frequentist methods have been compared on simulated and real data. In accordance with FDA recommendations, control of type I and type II error rates has been evaluated. The proposed method controls them even if the historical experiments are not completely similar to the one of interest.
112 - Rui Tuo , Wenjia Wang 2020
Bayesian optimization is a class of global optimization techniques. It regards the underlying objective function as a realization of a Gaussian process. Although the outputs of Bayesian optimization are random according to the Gaussian process assumption, quantification of this uncertainty is rarely studied in the literature. In this work, we propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, in terms of constructing confidence regions of the maximum point or value of the objective function. These regions can be computed efficiently, and their confidence levels are guaranteed by newly developed uniform error bounds for sequential Gaussian process regression. Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.
After a rich history in medicine, randomisation control trials both simple and complex are in increasing use in other areas such as web-based AB testing and planning and design decisions. A main objective is to be able to measure parameters, and contrasts in particular, while guarding against biases from hidden confounders. After careful definitions of classical entities such as contrasts, an algebraic method based on circuits is introduced which gives a wide choice of randomisation schemes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا