Do you want to publish a course? Click here

Spontaneous photon-pair generation at the nanoscale

72   0   0.0 ( 0 )
 Added by Giuseppe Marino
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical nanoantennas have shown a great capacity for efficient extraction of photons from the near to the far-field, enabling directional emission from nanoscale single-photon sources. However, their potential for the generation and extraction of multi-photon quantum states remains unexplored. Here we demonstrate experimentally the nanoscale generation of two-photon quantum states at telecommunication wavelengths based on spontaneous parametric down-conversion in an optical nanoantenna. The antenna is a crystalline AlGaAs nanocylinder, possessing Mie-type resonances at both the pump and the bi-photon wavelengths and when excited by a pump beam generates photonpairs with a rate of 35 Hz. Normalized to the pump energy stored by the nanoantenna, this rate corresponds to 1.4 GHz/Wm, being one order of magnitude higher than conventional on-chip or bulk photon-pair sources. Our experiments open the way for multiplexing several antennas for coherent generation of multi-photon quantum states with complex spatial-mode entanglement and applications in free-space quantum communications and sensing.



rate research

Read More

188 - L. G. Helt , M. J. Steel , 2013
We consider integrated photon pair sources based on spontaneous four-wave mixing and derive expressions for the pump powers at which various nonlinear processes become relevant for a variety of source materials and structures. These expressions serve as rules of thumb in identifying reasonable parameter regimes for the design of such sources. We demonstrate that if pump powers are kept low enough to suppress cross-phase modulation, multi-pair events as well as many other nonlinear effects are often also constrained to negligible levels.
157 - K. Laiho , B. Pressl , A. Schlager 2016
We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions. Second, by measuring the spectra of the emitted PDC photons we gain access to their group index dispersion. Our results offer a simple approach for determining the PDC process parameters in the spectral domain and provide an important feedback for designing such sources, especially in the broadband case.
We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.
We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)$^{-1}$ is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.
We calculate that an appropriate modification of the field associated with only one of the photons of a photon pair can suppress generation of the pair entirely. From this general result, we develop a method for suppressing the generation of undesired photon pairs utilizing photonic stop bands. For a third-order nonlinear optical source of frequency-degenerate photons we calculate the modified frequency spectrum (joint spectral intensity) and show a significant increase in a standard metric, the coincidence to accidental ratio. These results open a new avenue for photon-pair frequency correlation engineering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا