No Arabic abstract
Water vapor condensation is common in nature and widely used in industrial applications, including water harvesting, power generation, and desalination. As compared to traditional filmwise condensation, dropwise condensation on lubricant-infused surfaces (LIS) can lead to an order-of-magnitude increase in heat transfer rates. Small droplets (with the diameter below 100 $mu$m) account for nearly 85 percent of the total heat transfer and droplet sweeping plays a crucial role in clearing nucleation sites, allowing for frequent re-nucleation. Here, we focus on the dynamic interplay of microdroplets with the thin lubricant film during water vapor condensation on LIS. Coupling high-speed imaging, optical microscopy, and interferometry, we show that the initially uniform lubricant film re-distributes during condensation. Governed by lubricant height gradients, microdroplets as small as 2 $mu$m in diameter undergo rigorous and gravity-independent self-propulsion, travelling distances multiples of their diameters at velocities up to 1100 $mu$m/s. Although macroscopically the movement appears to be random, we show that on a microscopic level capillary attraction due to asymmetrical lubricant menisci causes this gravity-independent droplet motion. Based on a lateral force balance analysis, we quantitatively find that the sliding velocity initially increases during movement, but decreases sharply at shorter inter-droplet spacing. The maximum sliding velocity is inversely proportional to the oil viscosity and is strongly dependent of the droplet size, which is in excellent agreement with the experimental observations. This novel and non-traditional droplet movement is expected to significantly enhance the sweeping efficiency during dropwise condensation, leading to higher nucleation and heat transfer rates.
Lubricant-infused surfaces (LISs) can promote stable dropwise condensation and improve heat transfer rates due to a low nucleation free-energy barrier and high droplet mobility. Topographical differences in the oil surface cause water microdroplets to rigorously self-propel long distances, continuously redistributing the oil film and potentially refreshing the surface for re-nucleation. Using high-speed microscopy, we reveal that during water condensation on LISs, the smallest visible droplets (diameter ~ 1um, qualitatively representing nucleation) predominantly emerge in oil-poor regions due to a smaller thermal activation barrier. Considering the significant heat transfer performance of microdroplets (< 10um) and transient characteristic of microdroplet movement, we compare the apparent nucleation rate density and water collection rate for LISs with oils of different viscosity and a solid hydrophobic surface at a wide range of subcooling temperatures. Generally, the lowest lubricant viscosity leads to the highest nucleation rate density. We characterize the length and frequency of microdroplet movement and attribute the nucleation enhancement primarily to higher droplet mobility and surface refreshing frequency. Interestingly and unexpectedly, hydrophobic surfaces outperform high-viscosity LISs at high subcooling temperatures, but are generally inferior to any of the tested LISs at low temperature differences. To explain the observed non-linearity between LISs and the solid hydrophobic surface, we introduce two dominant regimes that influence the condensation efficiency: mobility-limited and coalescence-limited. Our findings advance the understanding of dynamic water-lubricant interactions and provide new design rationales for choosing surfaces for enhanced dropwise condensation and water collection efficiencies.
Micro and nanodroplets have many important applications such as in drug delivery, liquid-liquid extraction, nanomaterial synthesis and cosmetics. A commonly used method to generate a large number of micro or nanodroplets in one simple step is solvent exchange (also called nanoprecipitation), in which a good solvent of the droplet phase is displaced by a poor one, generating an oversaturation pulse that leads to droplet nucleation. Despite its crucial importance, the droplet growth resulting from the oversaturation pulse in this ternary system is still poorly understood. We experimentally and theoretically study this growth in Hele-Shaw like channels by measuring the total volume of the oil droplets that nucleates out of it. In order to prevent the oversaturated oil from exiting the channel, we decorated some of the channels with a porous region in the middle. Solvent exchange is performed with various solution compositions, flow rates and channel geometries, and the measured droplets volume is found to increase with the Peclet number $Pe$ with an approximate effective power law $Vpropto Pe^{0.50}$. A theoretical model is developed to account for this finding. With this model we can indeed explain the $Vpropto Pe^{1/2}$ scaling, including the prefactor, which can collapse all data of the porous channels onto one universal curve, irrespective of channel geometry and composition of the mixtures. Our work provides a macroscopic approach to this bottom-up method of droplet generation and may guide further studies on oversaturation and nucleation in ternary systems.
The transport of small quantities of liquid on a solid surface is inhibited by the resistance to motion caused by the contact between the liquid and the solid. To overcome such resistance, motion can be externally driven through gradients in electric fields, but these all inconveniently involve the input of external energy. Alternatively, gradients in physical shape and wettability - the conical shape of cactus spines to create self-propelled motion. However, such self-propelled motion to date has limited success in overcoming the inherent resistance to motion of the liquid contact with the solid. Here we propose a simple solution in the form of shaped-liquid surface, where solid topographic structures at one length scale provides the base for a smaller length-scale liquid conformal layer. This dual-length scale render possible slippery surfaces with superhydrophobic properties. Combined to an heterogeneous topography, it provides a gradient in liquid-on-liquid wettability with minimal resistance to motion and long range directional self-propelled droplet transport. Moreover, the liquid-liquid contact enables impacting droplets to be captured and transported, even when the substrate is inverted. These design principles are highly beneficial for droplet transport in microfluidics, self-cleaning surfaces, fog harvesting and in heat transfer.
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.
We present here a comprehensive derivation for the speed of a small bottom-heavy sphere forced by a transverse acoustic field and thereby establish how density inhomogeneities may play a critical role in acoustic propulsion. The sphere is trapped at the pressure node of a standing wave whose wavelength is much larger than the sphere diameter. Due to its inhomogeneous density, the sphere oscillates in translation and rotation relative to the surrounding fluid. The perturbative flows induced by the spheres rotation and translation are shown to generate a rectified inertial flow responsible for a net mean force on the sphere that is able to propel the particle within the zero-pressure plane. To avoid an explicit derivation of the streaming flow, the propulsion speed is computed exactly using a suitable version of the Lorentz reciprocal theorem. The propulsion speed is shown to scale as the inverse of the viscosity, the cube of the amplitude of the acoustic field and is a non trivial function of the acoustic frequency. Interestingly, for some combinations of the constitutive parameters (fluid to solid density ratio, moment of inertia and centroid to center of mass distance), the direction of propulsion is reversed as soon as the frequency of the forcing acoustic field becomes larger than a certain threshold. The results produced by the model are compatible with both the observed phenomenology and the orders of magnitude of the measured velocities.