Do you want to publish a course? Click here

Hammerhead, an ultrahigh resolution ePix camera for wavelength-dispersive spectrometers

56   0   0.0 ( 0 )
 Added by Gabriel Blaj
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Wavelength-dispersive spectrometers (WDS) are often used in synchrotron and FEL applications where high energy resolution (in the order of eV) is important. Increasing WDS energy resolution requires increasing spatial resolution of the detectors in the dispersion direction. The common approaches with strip detectors or small pixel detectors are not ideal. We present a novel approach, with a sensor using rectangular pixels with a high aspect ratio (between strips and pixels, further called strixels), and strixel redistribution to match the square pixel arrays of typical ASICs while avoiding the considerable effort of redesigning ASICs. This results in a sensor area of 17.4 mm x 77 mm, with a fine pitch of 25 $mu$m in the horizontal direction resulting in 3072 columns and 176 rows. The sensors use ePix100 readout ASICs, leveraging their low noise (43 e$^-$, or 180 eV rms). We present results obtained with a Hammerhead ePix100 camera, showing that the small pitch (25 $mu$m) in the dispersion direction maximizes performance for both high and low photon occupancies, resulting in optimal WDS energy resolution. The low noise level at high photon occupancy allows precise photon counting, while at low occupancy, both the energy and the subpixel position can be reconstructed for every photon, allowing an ultrahigh resolution (in the order of 1 $mu$m) in the dispersion direction and rejection of scattered beam and harmonics. Using strixel sensors with redistribution and flip-chip bonding to standard ePix readout ASICs results in ultrahigh position resolution ($sim$1 $mu$m) and low noise in WDS applications, leveraging the advantages of hybrid pixel detectors (high production yield, good availability, relatively inexpensive) while minimizing development complexity through sharing the ASIC, hardware, software and DAQ development with existi



rate research

Read More

The color X-ray camera (SLcam) is a full-field single photon imager. As stand-alone camera, it is applicable for energy and space-resolved X-ray detection measurements. The exchangeable poly-capillary optics in front of a beryllium entrance window conducts X-ray photons from the probe to distinguished energy dispersive pixels on a pnCCD. The dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the element distribution in a sample. No scanning system is employed. A first elemental composition image of the sample is visible within minutes while statistics is improving in the course of time. Straight poly-capillary optics allows for 1:1 imaging with a space resolution of 50 um and no limited depth of sharpness, ideal to map uneven objects. Using conically shaped optics, a magnification of 6 times was achieved with a space resolution of 10 um. We present a measurement with a laboratory source showing the camera capability to perform fast full-field X-ray Fluorescence (FF-XRF) imaging with an easy, portable and modular setup.
126 - P. Ko , J.R. Scott , I. Jovanovic 2015
To more fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a mathematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex spectral patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, leading to increased spectral resolution by more than an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682, which agreed well with an independent measurement and literature values. The doublet separation (29 pm) is similar to the U isotope shift (25 pm) at 424.437 nm that is of interest to monitoring nuclear nonproliferation activities. Additionally, the technique was applied to LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.682. This reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.
We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (<2 eV) structures. This scheme can easily be implemented into ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ~1$ mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.
Ultrahigh-resolution fiber-optic sensing has been demonstrated with a meter-long, high-finesse fiber Fabry-Perot interferometer (FFPI). The main technical challenge of large, environment-induced resonance frequency drift is addressed by locking the interrogation laser to a similar meter-long FFPI, which, along with the FFPI sensor, is thermally and mechanically isolated from the ambient. A nominal, noise-limited strain resolution of 800 f{epsilon} /sqrt(Hz) has been achieved within 1 to 100 Hz. Strain resolution further improves to 75 f{epsilon} /sqrt(Hz) at 1 kHz, 60 f{epsilon} /sqrt(Hz) at 2 kHz and 40 f{epsilon} /sqrt(Hz) at 23 kHz, demonstrating comparable or even better resolutions than proven techniques such as {pi}-phase-shifted and slow-light fiber Bragg gratings. Limitations of the current system are analyzed and improvement strategies are presented. The work lays out a feasible path toward ultrahigh-resolution fiber-optic sensing based on long FFPIs.
151 - D. Beck , K. Blaum , G. Bollen 2008
Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectrometer ISOLTRAP, located at ISOLDE/CERN. The deviations from the ideal magnetic and electric fields are probed by measuring the cyclotron frequency and the reduced cyclotron frequency, respectively, of stored ions as a function of the time between the ejection of ions from the preparation trap and their capture in the precision trap, which influences the energy of their axial motion. The correction parameters are adjusted to minimize the frequency shifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا