Do you want to publish a course? Click here

A note on the parity anomaly from the Hamiltonian point of view

168   0   0.0 ( 0 )
 Added by Matthew Lapa
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the parity anomaly of the massless Dirac fermion in $2+1$ dimensions from the Hamiltonian, as opposed to the path integral, point of view. We have two main goals for this note. First, we hope to make the parity anomaly more accessible to condensed matter physicists, who generally prefer to work within the Hamiltonian formalism. The parity anomaly plays an important role in modern condensed matter physics, as the massless Dirac fermion is the surface theory of the time-reversal invariant topological insulator (TI) in $3+1$ dimensions. Our second goal is to clarify the relation between the time-reversal symmetry of the massless Dirac fermion and the fractional charge of $pmfrac{1}{2}$ (in units of $e$) which appears on the surface of the TI when a magnetic monopole is present in the bulk. To accomplish these goals we study the Dirac fermion in the Hamiltonian formalism using two different regularization schemes. One scheme is consistent with the time-reversal symmetry of the massless Dirac fermion, but leads to the aforementioned fractional charge. The second scheme does not lead to any fractionalization, but it does break time-reversal symmetry. For both regularization schemes we also compute the effective action $S_{text{eff}}[A]$ which encodes the response of the Dirac fermion to a background electromagnetic field $A$. We find that the two effective actions differ by a Chern-Simons counterterm with fractional level equal to $frac{1}{2}$, as is expected from path integral treatments of the parity anomaly. Finally, we propose the study of a bosonic analogue of the parity anomaly as a topic for future work.



rate research

Read More

64 - Andres Greco 2016
Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.
Nodal-line semimetals are topological semimetals characterized by one-dimensional band-touching loops protected by the combined symmetry of inversion $mathcal{P}$ and time-reversal $mathcal{T}$ in absence of spin-orbit coupling. These nodal loops can be understood as a one-parameter family of Dirac points exhibiting the parity anomaly associated to $mathcal{P}*mathcal{T}$ symmetry. We find that the parity anomaly also appears in the non-linear optical response of these systems in an analogous way to the linear response transport. We analyze the presence of a tilting term in the Hamiltonian as an element that does not spoil $mathcal{P}*mathcal{T}$ symmetry: while it is $mathcal{P}*mathcal{T}$-symmetric, it breaks separately both $mathcal{P}$ and $mathcal{T}$ symmetries, allowing for the potential experimental observability of the linear and non-linear Hall conductivities in appropriate nodal-line semimetals.
235 - Davide Fermi 2019
The Casimir energy for a massless, neutral scalar field in presence of a point interaction is analyzed using a general zeta-regularization approach developed in earlier works. In addition to a regular bulk contribution, there arises an anomalous boundary term which is infinite despite renormalization. The intrinsic nature of this anomaly is briefly discussed.
Recent experimental progress in condensed matter physics enables the observation of signatures of the parity anomaly in two-dimensional Dirac-like materials. Using effective field theories and analyzing band structures in external out-of-plane magnetic fields (orbital fields), we show that topological properties of quantum anomalous Hall (QAH) insulators are related to the parity anomaly. We demonstrate that the QAH phase survives in orbital fields, violates the Onsager relation, and can be therefore distinguished from a quantum Hall (QH) phase. As a fingerprint of the QAH phase in increasing orbital fields, we predict a transition from a quantized Hall plateau with $sigma_mathrm{xy}= -mathrm{e}^2/mathrm{h}$ to a not perfectly quantized plateau, caused by scattering processes between counterpropagating QH and QAH edge states. This transition can be especially important in paramagnetic QAH insulators, such as (Hg,Mn)Te/CdTe quantum wells, in which exchange interaction and orbital fields compete.
112 - K. Kubota , H. Terao 2001
Dynamical symmetry breaking in three dimensional QED with $N$ flavors, which has been mostly analyzed by solving the Schwinger-Dyson equations, is investigated by means of the approximated Wilson, or non-perturbative, renormalization group (RG). We study the RG flows of the gauge coupling and the general four-fermi couplings allowed by the symmetry with concentrating our interest on study of the phase structure. The RG equations have no gauge parameter dependence in our approximation scheme. It is found that there exist chirally broken and unbroken phases for $N > N_{rm cr}$ ($3 < N_{rm cr} < 4$) and that the unbroken phase disappears for $N < N_{rm cr}$. We also discuss the spontaneous parity breaking in three dimensional QED with the four-fermi interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا