Do you want to publish a course? Click here

Cosmology with the Highly Redshifted 21cm Line

78   0   0.0 ( 0 )
 Added by Adrian Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In addition to being a probe of Cosmic Dawn and Epoch of Reionization astrophysics, the 21cm line at $z>6$ is also a powerful way to constrain cosmology. Its power derives from several unique capabilities. First, the 21cm line is sensitive to energy injections into the intergalactic medium at high redshifts. It also increases the number of measurable modes compared to existing cosmological probes by orders of magnitude. Many of these modes are on smaller scales than are accessible via the CMB, and moreover have the advantage of being firmly in the linear regime (making them easy to model theoretically). Finally, the 21cm line provides access to redshifts prior to the formation of luminous objects. Together, these features of 21cm cosmology at $z>6$ provide multiple pathways toward precise cosmological constraints. These include the marginalizing out of astrophysical effects, the utilization of redshift space distortions, the breaking of CMB degeneracies, the identification of signatures of relative velocities between baryons and dark matter, and the discovery of unexpected signs of physics beyond the $Lambda$CDM paradigm at high redshifts.



rate research

Read More

223 - Jonathan C. Pober 2014
The highly redshifted 21 cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ~ 1) up through the Epoch of Reionization (z ~ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21 cm signal, since this approach maximizes the signal-to-noise in the initial measurement. However, like galaxy surveys, the 21 cm signal is affected by redshift space distortions, and is inherently anisotropic between the line-of-sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line-of-sight and transverse directions: the so-called foreground wedge. Although foreground subtraction techniques are actively being developed, a foreground avoidance approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyze the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21 cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (HERA and the SKA), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like CHIME can place non-trivial constraints on cosmological parameters.
The epoch of reionization, when photons from early galaxies ionized the intergalactic medium about a billion years after the Big Bang, is the last major phase transition in the Universes history. Measuring the characteristics of the transition is important for understanding early galaxies and the cosmic web and for modeling dwarf galaxies in the later Universe. But such measurements require probes of the intergalactic medium itself. Here we describe how the 21-cm line of neutral hydrogen provides a powerful probe of the reionization process and therefore important constraints on both the galaxies and intergalactic absorbers at that time. While existing experiments will make precise statistical measurements over the next decade, we argue that improved 21-cm analysis techniques - allowing imaging of the neutral gas itself - as well as improved theoretical models, are crucial for testing our understanding of this important era.
We present a study of the impact of a bright quasar on the redshifted 21cm signal during the Epoch of Reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changing the size and morphology of the H II regions they are born in. We choose stellar and quasar luminosities in a way that is favourable to seeing such an effect. We find that even the most luminous of our quasar models is not able to increase the size of its native H II region substantially beyond those of large H II regions produced by clustered stellar sources alone. However, the quasar H II region is found to be more spherical. We next investigate the prospects of detecting such H II regions in the redshifted 21cm data from the Low Frequency Array (LOFAR) by means of a matched filter technique. We find that H II regions with radii ~ 25 comoving Mpc or larger should have a sufficiently high detection probability for 1200 hours of integration time. Although the matched filter can in principle distinguish between more and less spherical regions, we find that when including realistic system noise this distinction can no longer be made. The strong foregrounds are found not to pose a problem for the matched filter technique. We also demonstrate that when the quasar position is known, the redshifted 21cm data can still be used to set upper limits on the ionizing photon rate of the quasar. If both the quasar position and its luminosity are known, the redshifted 21 cm data can set new constrains on quasar lifetimes.
We investigate the possibility of performing cosmological studies in the redshift range $2.5<z<5$ through suitable extensions of existing and upcoming radio-telescopes like CHIME, HIRAX and FAST. We use the Fisher matrix technique to forecast the bounds that those instruments can place on the growth rate, the BAO distance scale parameters, the sum of the neutrino masses and the number of relativistic degrees of freedom at decoupling, $N_{rm eff}$. We point out that quantities that depend on the amplitude of the 21cm power spectrum, like $fsigma_8$, are completely degenerate with $Omega_{rm HI}$ and $b_{rm HI}$, and propose several strategies to independently constraint them through cross-correlations with other probes. Assuming $5%$ priors on $Omega_{rm HI}$ and $b_{rm HI}$, $k_{rm max}=0.2~h{rm Mpc}^{-1}$ and the primary beam wedge, we find that a HIRAX extension can constrain, within bins of $Delta z=0.1$: 1) the value of $fsigma_8$ at $simeq4%$, 2) the value of $D_A$ and $H$ at $simeq1%$. In combination with data from Euclid-like galaxy surveys and CMB S4, the sum of the neutrino masses can be constrained with an error equal to $23$ meV ($1sigma$), while $N_{rm eff}$ can be constrained within 0.02 ($1sigma$). We derive similar constraints for the extensions of the other instruments. We study in detail the dependence of our results on the instrument, amplitude of the HI bias, the foreground wedge coverage, the nonlinear scale used in the analysis, uncertainties in the theoretical modeling and the priors on $b_{rm HI}$ and $Omega_{rm HI}$. We conclude that 21cm intensity mapping surveys operating in this redshift range can provide extremely competitive constraints on key cosmological parameters.
Line-intensity mapping of the 21cm line is a powerful probe of large scale structure at z<6, tracing large-scale structure via neutral hydrogen content that is found within galaxies. In principle, it enables cost-efficient surveys of the matter distribution up to z~6, unlocking orders of magnitude more modes for observational cosmology. Canada has been a traditional leader in this field, having led the first detections of the cosmological 21cm signal via cross-correlations with optical galaxy surveys and having constructed the Canadian Hydrogen Intensity Mapping Experiment (CHIME). The field is now entering a new era where data is abundant, allowing studies in how to overcome systematics to be tackled in an empirical, head-on fashion. In the next few years, this will produce the first detection of the 21cm auto power spectrum, which will pave the way towards a large suite of scientific possibilities. These potentially include precision measurements on the dark energy equation of state and other LCDM parameters, constraints on how HI mass traces dark matter, a detection of neutrino effects on large-scale structure, and the use of 21cm lensing to further constrain cosmology. To turn these promising directions into reality, we recommend a sustained program of investment in 21cm cosmology, starting with funding for the Canadian Hydrogen Observatory and Radio transient Detector (CHORD), followed by small-scale development efforts targeting next-generation hardware and sustained support for theory and technical staff support. Additionally, Canada should invest in complementary line-intensity mapping efforts (such as with CO or [CII] lines) and maintain participation in next-generation international efforts such as the Packed Ultra-wideband Mapping Array (PUMA) and the Square Kilometre Array (SKA).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا