No Arabic abstract
The epoch of reionization, when photons from early galaxies ionized the intergalactic medium about a billion years after the Big Bang, is the last major phase transition in the Universes history. Measuring the characteristics of the transition is important for understanding early galaxies and the cosmic web and for modeling dwarf galaxies in the later Universe. But such measurements require probes of the intergalactic medium itself. Here we describe how the 21-cm line of neutral hydrogen provides a powerful probe of the reionization process and therefore important constraints on both the galaxies and intergalactic absorbers at that time. While existing experiments will make precise statistical measurements over the next decade, we argue that improved 21-cm analysis techniques - allowing imaging of the neutral gas itself - as well as improved theoretical models, are crucial for testing our understanding of this important era.
The cosmic dawn refers to the period of the Universes history when stars and black holes first formed and began heating and ionizing hydrogen in the intergalactic medium (IGM). Though exceedingly difficult to detect directly, the first stars and black holes can be constrained indirectly through measurements of the cosmic 21-cm background, which traces the ionization state and temperature of intergalactic hydrogen gas. In this white paper, we focus on the science case for such observations, in particular those targeting redshifts z $gtrsim$ 10 when the IGM is expected to be mostly neutral. 21-cm observations provide a unique window into this epoch and are thus critical to advancing first star and black hole science in the next decade.
The Dark Ages are the period between the last scattering of the cosmic microwave background and the appearance of the first luminous sources, spanning approximately 1100 < z < 30. The only known way to measure fluctuations in this era is through the 21-cm line of neutral hydrogen. Such observations have enormous potential for cosmology, because they span a large volume while the fluctuations remain linear even on small scales. Observations of 21-cm fluctuations during this era can therefore constrain fundamental aspects of our Universe, including inflation and any exotic physics of dark matter. While the observational challenges to these low-frequency 21-cm observations are enormous, especially from the terrestrial environment, they represent an important goal for cosmology.
This white paper highlights the crucial and urgent synergies required between WFIRST, Subaru Hyper Suprime-Cam or other >25m-class telescopes galaxy observations and SKA 21cm measurements to constrain the nature of reionization (ionization history and topology) and its sources.
The highly redshifted 21 cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ~ 1) up through the Epoch of Reionization (z ~ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21 cm signal, since this approach maximizes the signal-to-noise in the initial measurement. However, like galaxy surveys, the 21 cm signal is affected by redshift space distortions, and is inherently anisotropic between the line-of-sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line-of-sight and transverse directions: the so-called foreground wedge. Although foreground subtraction techniques are actively being developed, a foreground avoidance approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyze the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21 cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (HERA and the SKA), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like CHIME can place non-trivial constraints on cosmological parameters.
The motion of the solar system with respect to the cosmic rest frame modulates the monopole of the Epoch of Reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative of the monopole signal. We argue that although the signal is weaker by a factor of $sim100$, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Moreover, an experiment designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.