Do you want to publish a course? Click here

Mapping Galaxy Clusters in the Distant Universe

102   0   0.0 ( 0 )
 Added by Helmut Dannerbauer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the science case for mapping several thousand galaxy (proto)clusters at z=1-10 with a large aperture single dish sub-mm facility, producing a high-redshift counterpart to local large surveys of rich clusters like the well-studied Abell catalogue. Principal goals of a large survey of distant clusters are the evolution of galaxy clusters over cosmic time and the impact of environment on the evolution and formation of galaxies. To make a big leap forward in this emerging research field, the community would benefit from a large-format, wide-band, direct-detection spectrometer (e.g., based on MKID technology), covering a wide field of ~1 square degree and a frequency coverage from 70 to 700 GHz.



rate research

Read More

We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratio in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially-resolved spectroscopy for thousands of nearby galaxies (median redshift of z = 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between redshifts z = 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGN and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5-meter Sloan Foundation Telescope at Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5-meter du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in July 2016.
We present a study of the central radio activity of galaxy clusters at high redshift. Using a large sample of galaxy clusters at $0.7<z<1.5$ from the Massive and Distant Clusters of {it WISE} Survey and the Faint Images of the Radio Sky at Twenty-Centimeters $1.4$~GHz catalog, we measure the fraction of clusters containing a radio source within the central $500$~kpc, which we term the cluster radio-active fraction, and the fraction of cluster galaxies within the central $500$~kpc exhibiting radio emission. We find tentative ($2.25sigma$) evidence that the cluster radio-active fraction increases with cluster richness, while the fraction of cluster galaxies that are radio-luminous ($L_{1.4~mathrm{GHz}}geq10^{25}$~W~Hz$^{-1}$) does not correlate with richness at a statistically significant level. Compared to that calculated at $0 < z < 0.6$, the cluster radio-active fraction at $0 < z < 1.5$ increases by a factor of $10$. This fraction is also dependent on the radio luminosity. Clusters at higher redshift are much more likely to host a radio source of luminosity $L_{1.4~mathrm{GHz}}gtrsim10^{26}$~W~Hz$^{-1}$ than are lower redshift clusters. We compare the fraction of radio-luminous cluster galaxies to the fraction measured in a field environment. For $0.7<z<1.5$, we find that both the cluster and field radio-luminous galaxy fraction increases with stellar mass, regardless of environment, though at fixed stellar mass, cluster galaxies are roughly $2$ times more likely to be radio-luminous than field galaxies.
It is well known that Thomson scattering of CMB photons in galaxy clusters introduces new anisotropies in the CMB radiation field, but however little attention is payed to the fraction of CMB photons that are scattered off the line of sight, causing a slight blurring of the CMB anisotropies present at the moment of scattering. In this work we study this {it blurring} effect, and find that it has a non-negligible impact on estimations of the kinetic Sunyaev-Zeldovich (kSZ) effect: it induces a 10% correction in 20-40% of the clusters/groups, and a 100% correction in $sim 5$% of the clusters in an ideal (noiseless) experiment. We explore the possibility of using this blurring term to probe the CMB anisotropy field at different epochs in our Universe. In particular, we study the required precision in the removal of the kSZ that enables detecting the blurring term $-tau_T delta T / T_0$ in galaxy cluster populations placed at different redshift shells. By mapping this term in those shells, we would provide a tomographic probe for the growth of the Integrated Sachs Wolfe effect (ISW) during the late evolutionary stages of the Universe. We find that the required precision of the cluster peculiar velocity removal is of the order of 100 -- 200 km s$^{-1}$ in the redshift range 0.2 -- 0.8, after assuming that all clusters more massive than 10$^{14}$ h$^{-1}$ M$_{odot}$ are observable. These errors are comparable to the total expected linear line of sight velocity dispersion for clusters in WMAPV cosmogony, and correspond to a residual level of roughly 900 -- 1800 $tau_T mu$K per cluster, including all types of contaminants and systematics. Were this precision requirement achieved, then independent constraints on the intrinsic cosmological dipole would be simultaneously provided.
We present a study of the distribution of X-ray detected active galactic nuclei (AGN) in the five most massive, $M_{500}^{SZ}>10^{14} M_{odot}$ , and distant, z$sim$1, galaxy clusters in the textit{Planck} and South Pole Telescope (SPT)textit{} surveys. The spatial and thermodynamic individual properties of each cluster have been defined with unprecedented accuracy at this redshift using deep X-ray observations. This is an essential property of our sample in order to precisely determine the $R_{500}^{Y_{textrm x}}$ radius of the clusters. For our purposes, we computed the X-ray point-like source surface density in 0.5$R_{500}^{Y_{textrm x}}$ wide annuli up to a clustercentric distance of 4$R_{500}^{Y_{textrm x}}$, statistically subtracting the background and accounting for the respective average density of optical galaxies. We found a significant excess of X-ray point sources between 2 and 2.5$R_{500}^{Y_{textrm x}}$ at the 99.9% confidence level. The results clearly display for the first time strong observational evidence of AGN triggering in the outskirts of high-redshift massive clusters with such a high statistical significance. We argue that the particular conditions at this distance from the cluster centre increase the galaxy merging rate, which is probably the dominant mechanism of AGN triggering in the outskirts of massive clusters.
We present first results from a galaxy population study in the highest redshift galaxy clusters identified in the 2500 deg$^2$ South Pole Telescope Sunyaev Zeldovich effect (SPT-SZ) survey. The cluster selection is to first order independent of galaxy properties, making the SPT-SZ sample particularly well suited for cluster galaxy population studies. We carry out a 4-band imaging campaign with the {it Hubble} and {it Spitzer} Space Telescopes of the five $zgtrsim 1.4$, S/N$_{SZE}>$5 clusters, that are among the rarest most massive clusters known at this redshift. All five show clear overdensities of red galaxies whose colors agree with the initial cluster redshift estimates. The highest redshift cluster in this sample, SPT-CLJ0459-4947 at $zsim1.72$, is the most distant $M_{500}>10^{14}~M_{odot}$ ICM-selected cluster discovered thus far, and is one of only three known clusters in this mass range at $zgtrsim 1.7$, regardless of selection. Based on UVJ-like photometric classification of quiescent and star-forming galaxies, the passive fraction in the cluster central regions ($r/r_{500}<0.7$) is higher than in the field at the same redshift, with corresponding environmental quenching efficiencies typically in the range $sim0.5-0.8$ for stellar masses $log(M/M_{odot})>10.85$. We have explored the impact of emission from star formation on the selection of this sample, concluding that all five clusters studied here would still have been detected with S/N$_{SZE}>$5, even if they had the same passive fraction as measured in the field. Our results thus point towards an efficient suppression of star formation in massive galaxies in the central regions of the most massive clusters, occurring already earlier than $zsim1.5$. [Abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا