Do you want to publish a course? Click here

Vortex patterns and the critical rotational frequency in rotating dipolar Bose-Einstein condensates

79   0   0.0 ( 0 )
 Added by Yongyong Cai
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in a rotating frame with both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization angle, we study the profiles of the single vortex state and show how the critical rotational frequency change with the s-wave contact interaction strengths, DDI strengths and the polarization angles. In addition, we find numerically that at the `magic angle $vartheta=arccos(sqrt{3}/3)$, the critical rotational frequency is almost independent of the DDI strength. By numerically solving the dipolar GPE at high rotational speed, we identify different patterns of vortex lattices which strongly depend on the polarization direction. As a result, we undergo a study of vortex lattice structures for the whole regime of polarization direction and find evidence that the vortex lattice orientation tends to be aligned with the direction of the dipoles.



rate research

Read More

We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topological defects have been found. These systems exhibit both superfluidity and magnetic crystalline ordering and they could be realized experimentally by imparting angular momentum in the condensate.
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich variety of structural changes, including the formation of zig-zag and linear configurations. These spatial re-arrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the anisotropy parameter. The existence of such structural changes opens up possibilities for the coherent exploitation of effective many-body systems based on vortex patterns.
We explore spatial symmetry breaking of a dipolar Bose Einstein condensate in the thermodynamic limit and reveal a critical point in the phase diagram at which crystallization occurs via a second order phase transition. This behavior is traced back to the significant effects of quantum fluctuations in dipolar condensates, which moreover stabilize a new supersolid phase, namely a regular honeycomb pattern with maximal modulational contrast and near-perfect superfluidity.
We investigate a small vortex-lattice system of four co-rotating vortices in an atomic Bose--Einstein condensate and find that the vortex dynamics display chaotic behaviour after a system quench introduced by reversing the direction of circulation of a single vortex through a phase-imprinting process. By tracking the vortex trajectories and Lyapunov exponent, we show the onset of chaotic dynamics is not immediate, but occurs at later times and is accelerated by the close-approach and separation of all vortices in a scattering event. The techniques we develop could potentially be applied to create locally induced chaotic dynamics in larger lattice systems as a stepping stone to study the role of chaotic events in turbulent vortex dynamics.
We study the properties of singly-quantized linear vortices in the supersolid phase of a dipolar Bose-Einstein condensate at zero temperature modeling $^{164}$Dy atoms. The system is extended in the $x-y$ plane and confined by a harmonic trap in the the polarization direction $z$. Our study is based on a generalized Gross-Pitaevskii equation. We characterize the ground state of the system in terms of spatial order and superfluid fraction and compare the properties of a single vortex and of a vortex dipole in the superfluid phase (SFP) and in the supersolid phase (SSP). At variance with a vortex in the SFP, which is free to move in the superfluid, a vortex in the SSP is localized at the interstitial sites and does not move freely. We have computed the energy barrier for motion from an equilibrium site to another. The fact that the vortex is submitted to a periodic potential has a dramatic effect on the dynamics of a vortex dipole made of two counter rotating parallel vortices; instead of rigidly translating as in the SFP, the vortex and anti-vortex approach each other by a series of jumps from one site to another until they annihilate in a very short time and their energy is transferred to bulk excitations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا