Do you want to publish a course? Click here

High-Throughput CNN Inference on Embedded ARM big.LITTLE Multi-Core Processors

198   0   0.0 ( 0 )
 Added by Siqi Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

IoT Edge intelligence requires Convolutional Neural Network (CNN) inference to take place in the edge devices itself. ARM big.LITTLE architecture is at the heart of prevalent commercial edge devices. It comprises of single-ISA heterogeneous cores grouped into multiple homogeneous clusters that enable power and performance trade-offs. All cores are expected to be simultaneously employed in inference to attain maximal throughput. However, high communication overhead involved in parallelization of computations from convolution kernels across clusters is detrimental to throughput. We present an alternative framework called Pipe-it that employs pipelined design to split convolutional layers across clusters while limiting parallelization of their respective kernels to the assigned cluster. We develop a performance-prediction model that utilizes only the convolutional layer descriptors to predict the execution time of each layer individually on all permitted core configurations (type and count). Pipe-it then exploits the predictions to create a balanced pipeline using an efficient design space exploration algorithm. Pipe-it on average results in a 39% higher throughput than the highest antecedent throughput.



rate research

Read More

Deep Neural Networks (DNNs) are witnessing increased adoption in multiple domains owing to their high accuracy in solving real-world problems. However, this high accuracy has been achieved by building deeper networks, posing a fundamental challenge to the low latency inference desired by user-facing applications. Current low latency solutions trade-off on accuracy or fail to exploit the inherent temporal locality in prediction serving workloads. We observe that caching hidden layer outputs of the DNN can introduce a form of late-binding where inference requests only consume the amount of computation needed. This enables a mechanism for achieving low latencies, coupled with an ability to exploit temporal locality. However, traditional caching approaches incur high memory overheads and lookup latencies, leading us to design learned caches - caches that consist of simple ML models that are continuously updated. We present the design of GATI, an end-to-end prediction serving system that incorporates learned caches for low-latency DNN inference. Results show that GATI can reduce inference latency by up to 7.69X on realistic workloads.
Convolutional neural networks (CNN) recently gained notable attraction in a variety of machine learning tasks: including music classification and style tagging. In this work, we propose implementing intermediate connections to the CNN architecture to facilitate the transfer of multi-scale/level knowledge between different layers. Our novel model for music tagging shows significant improvement in comparison to the proposed approaches in the literature, due to its ability to carry low-level timbral features to the last layer.
We present the design and optimization of a linear solver on General Purpose GPUs for the efficient and high-throughput evaluation of the marginalized graph kernel between pairs of labeled graphs. The solver implements a preconditioned conjugate gradient (PCG) method to compute the solution to a generalized Laplacian equation associated with the tensor product of two graphs. To cope with the gap between the instruction throughput and the memory bandwidth of current generation GPUs, our solver forms the tensor product linear system on-the-fly without storing it in memory when performing matrix-vector dot product operations in PCG. Such on-the-fly computation is accomplished by using threads in a warp to cooperatively stream the adjacency and edge label matrices of individual graphs by small square matrix blocks called tiles, which are then staged in registers and the shared memory for later reuse. Warps across a thread block can further share tiles via the shared memory to increase data reuse. We exploit the sparsity of the graphs hierarchically by storing only non-empty tiles using a coordinate format and nonzero elements within each tile using bitmaps. Besides, we propose a new partition-based reordering algorithm for aggregating nonzero elements of the graphs into fewer but denser tiles to improve the efficiency of the sparse format. We carry out extensive theoretical analyses on the graph tensor product primitives for tiles of various density and evaluate their performance on synthetic and real-world datasets. Our solver delivers three to four orders of magnitude speedup over existing CPU-based solvers such as GraKeL and GraphKernels. The capability of the solver enables kernel-based learning tasks at unprecedented scales.
Deep learning as a means to inferencing has proliferated thanks to its versatility and ability to approach or exceed human-level accuracy. These computational models have seemingly insatiable appetites for computational resources not only while training, but also when deployed at scales ranging from data centers all the way down to embedded devices. As such, increasing consideration is being made to maximize the computational efficiency given limited hardware and energy resources and, as a result, inferencing with reduced precision has emerged as a viable alternative to the IEEE 754 Standard for Floating-Point Arithmetic. We propose a quantization scheme that allows inferencing to be carried out using arithmetic that is fundamentally more efficient when compared to even half-precision floating-point. Our quantization procedure is significant in that we determine our quantization scheme parameters by calibrating against its reference floating-point model using a single inference batch rather than (re)training and achieve end-to-end post quantization accuracies comparable to the reference model.
We evaluate the performance of Devito, a domain specific language (DSL) for finite differences on Arm ThunderX2 processors. Experiments with two common seismic computational kernels demonstrate that Arm processors can deliver competitive performance compared to other Intel Xeon processors.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا